We present the first results of the measurements of angular auto-correlation functions (ACFs) of X-ray point sources detected in the XMM-Newton observations of the 2 deg2 COSMOS field (XMM-COSMOS). A significant positive signals have been detected in the 0.5-2 (SFT) band, in the angle range of 0.5-24 arcminutes, while the positive signals were at the 2 and 3 sigma levels in the 2-4.5 (MED) and 4.5-10 (UHD) keV bands respectively. Correctly taking integral constraints into account is a major limitation in interpreting our results. With power-law fits to the ACFs without the integral constraint term, we find correlation lengths of theta_c=1.9+-0.3, 0.8+0.5-0.4 and 6+-2 arcseconds for the SFT, MED, and UHD bands respectively for gamma=1.8. The inferred comoving correlation lengths, also taking into account the bias by the source merging due to XMM-Newton PSF, are 9.8+-0.7, 5.8+1.4-1.7 and 12+-2 h-1 Mpc at the effective redshifts of 1.1, 0.9, and 0.6 for the SFT, MED, and UHD bands respectively. If we include the integral constraint term in the fitting process,assuming that the power-law extends to the scale length of the entire XMM-COSMOSfield, the correlation lengths become larger by 20%-90%. Comparing the inferred rms fluctuations of the spatial distribution of AGNs with those of the underlying mass, the bias parameters of the X-ray source clustering at these effective redshifts are in the range b(AGN)=1.5-4. (Edited to simple ascii.)
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.