1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacillus mojavensis, a Metal-Tolerant Plant Growth-Promoting Bacterium, Improves Growth, Photosynthetic Attributes, Gas Exchange Parameters, and Alkalo-Polyphenol Contents in Silver Nanoparticle (Ag-NP)-Treated Withania somnifera L. (Ashwagandha)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Discharge of nanoparticles (NPs) into aquatic and terrestrial ecosystems during manufacturing processes and from various commercial goods has become a significant ecotoxicological concern. After reaching soil systems, NPs cause deleterious effects on soil fertility, microbial activity, and crop productivity. Taking into consideration the medicinal importance of Withania somnifera (L.) (ashwagandha), the present study assessed the potential hazards of silver nanoparticles (Ag-NPs) and the toxicity amelioration by a metal-tolerant plant growth-promoting rhizobacterium (PGPR). Bacillus mojavensis BZ-13 (NCBI accession number MZ950923) recovered from metal-polluted rhizosphere soil, tolerated an exceptionally high level of Ag-NPs. The growth-regulating substances synthesized by B. mojavensis were increased with increasing concentrations (0–1000 μg mL –1) of Ag-NPs. Also, strain BZ-13 had the ability to form biofilm, produce alginate and exopolysaccharides (EPSs), as well maintain swimming and swarming motilities in the presence of Ag-NPs. Soil application of varying concentrations of Ag-NPs resulted in a dose-related reduction in growth and biochemical features of ashwagandha. In contrast, following soil inoculation, B. mojavensis relieved the Ag-NPs-induced phytotoxicity and improved plant productivity. Root, shoot length, dry biomass, and leaf area increased by 13, 17, 37, 25%, respectively, when B. mojavensis was applied with 25 mg/kg Ag-NPs when compared to noninoculated controls. Furthermore, the soil plant analysis development (SPAD) index, photosystem efficiency (Fv/Fm), PS II quantum yield (FPS II), photochemical quenching (qP), non-photochemical quenching (NpQ), and total chlorophyll and carotenoid content of BZ-13-inoculated plants in the presence of 25 mg Ag-NPs/kg increased by 33, 29, 41, 47, 35, 26, and 25%, respectively, when compared to noninoculated controls that were exposed to the same amounts of NPs. In addition, a significant ( p ≤ 0.05) increase in 48, 18, 21, and 19% in withaferin-A (alkaloids), flavonoids, phenols, and tannin content, respectively, was recorded when plants were detached from bacterized and Ag-NP-treated plants. Leaf gas exchange parameters were also modulated in the case of inoculated plants. Furthermore, bacterial inoculation significantly decreased proline, lipid peroxidation, antioxidant enzymes, and Ag-NP’s absorption and build-up in phyto-organs. In conclusion, soil inoculation with B. mojavensis may possibly be used as an alternative to protect W. somnifera plants in soil contaminated with nanoparticles. Therefore, phytohormone and other biomolecule-synthesizing and NP-tolerant PGPR strains like B. mojavensis might serve as an agronomically significant and cost-effective remediation agent for augmenting the yield and productivity of medicinally important plants like ashwagandha raised in soil contaminated with nanoparticles in general and Ag-NPs in particular.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid determination of free proline for water-stress studies

          Plant and Soil, 39(1), 205-207
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS.

            D ARNON (1949)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Universal chemical assay for the detection and determination of siderophores

              A universal method to detect and determine siderophores was developed by using their high affinity for iron(III). The ternary complex chrome azurol S/iron(III)/hexadecyltrimethylammonium bromide, with an extinction coefficient of approximately 100,000 M-1 cm-1 at 630 nm, serves as an indicator. When a strong chelator removes the iron from the dye, its color turns from blue to orange. Because of the high sensitivity, determination of siderophores in solution and their characterization by paper electrophoresis chromatography can be performed directly on supernatants of culture fluids. The method is also applicable to agar plates. Orange halos around the colonies on blue agar are indicative of siderophore excretion. It was demonstrated with Escherichia coli strains that biosynthetic, transport, and regulatory mutations in the enterobactin system are clearly distinguishable. The method was successfully used to screen mutants in the iron uptake system of two Rhizobium meliloti strains, DM5 and 1021.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                17 April 2022
                26 April 2022
                : 7
                : 16
                : 13878-13893
                Affiliations
                []Section of Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University , Aligarh202002, Uttar Pradesh, India
                []Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University , Aligarh 202002, Uttar Pradesh, India
                [§ ]ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM) , Mau, 275101, Uttar Pradesh, India
                []Department of Botany and Microbiology, College of Science, King Saud University , P.O. Box 2455, Riyadh 11451, Saudi Arabia
                []Department of Biotechnology, Yeungnam University , Gyeongsan 38541, South Korea
                Author notes
                Author information
                https://orcid.org/0000-0002-5955-1697
                https://orcid.org/0000-0002-2443-9451
                Article
                10.1021/acsomega.2c00262
                9088912
                35559145
                e304d680-bd60-4142-994b-e86ae4793704
                © 2022 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 13 January 2022
                : 22 March 2022
                Funding
                Funded by: King Saud University, doi 10.13039/501100002383;
                Award ID: RSP-2021/229
                Categories
                Article
                Custom metadata
                ao2c00262
                ao2c00262

                Comments

                Comment on this article