51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many patients with epilepsy suffer from psychiatric comorbidities including depression, anxiety, psychotic disorders, cognitive, and personality changes, but the mechanisms underlying the association between epilepsy and psychopathology are only incompletely understood. Animal models of epilepsy, such as the pilocarpine model of acquired temporal lobe epilepsy (TLE), are useful to study the relationship between epilepsy and behavioral dysfunctions. In the present study, we examined behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in the C57BL/6 (B6) inbred strain of mice, which is commonly used as background strain for genetically modified mice. For this study, we used the same pilocarpine ramping-up dosing protocol and behavioral test battery than in a previous study in NMRI mice, thus allowing direct comparison between these two mouse strains. All B6 mice that survived SE developed epilepsy with spontaneous recurrent seizures. Epileptic B6 mice exhibited significant increases of anxiety-related behavior in the open field and light-dark box, increased locomotor activity in the open field, elevated plus maze, hole board, and novel object exploration tests, and decreased immobility in the forced swimming and tail suspension tests. Furthermore, spatial learning and memory were severely impaired in the Morris water maze, although hippocampal damage was much less severe than previously determined in NMRI mice. B6 mice in which pilocarpine did not induce SE but only single seizures did not exhibit any detectable neurodegeneration, but differed behaviorally from sham controls in several tests of the test battery used. Our data indicate that the pilocarpine model of TLE in B6 mice is ideally suited to study the neurobiological mechanisms underlying the association between seizures, brain damage and psychopathology.

          Related collections

          Author and article information

          Journal
          Exp Neurol
          Experimental neurology
          Elsevier BV
          1090-2430
          0014-4886
          Sep 2009
          : 219
          : 1
          Affiliations
          [1 ] Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany.
          Article
          S0014-4886(09)00225-8
          10.1016/j.expneurol.2009.05.035
          19500573
          e2bc9b96-fec4-4923-89f3-cf8e03e3a9b5
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content361

          Cited by38