4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Need for effective detection and early warnings for epidemic and pandemic preparedness planning in the context of multi-hazards: Lessons from the COVID-19 pandemic

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The need for effective early detection and surveillance for a robust pandemic and epidemic early warning and preparedness has been widely discussed amidst the Covid-19 pandemic, which suddenly erupted worldwide. This need is further established by various other hazards reported in many countries amidst the COVID-19 pandemic. In addition, the failure of early detection of pathogens and their source of origin has been largely connected with global transmission and severe outbreaks in many contexts. Therefore, effective early detection and warning is the key to successfully responding to epidemics and pandemics. Therefore, this paper aims to identify key elements and stages of an effective epidemic and pandemic early warning (EW) and response system. Further, the paper analyses inter-connections of the elements focusing on the COVID-19 and multi-hazard context. The systematic literature review method was used to collect data from electronic databases. Results suggest that epidemiological surveillance & detection, primary screening of raw data & information, risk and vulnerability assessments, prediction and decision-making, alerts & early warnings are critical components of epidemic and pandemic EW. In addition, response-control & mitigation, preparedness-preventive strategies, and reducing transmission & eradication of the disease are integrated components of the early warning and response ecosystem that largely depend on effective early warnings. The significance of integrating epidemic and pandemic EW with other EWS to operate as multi-hazard early warning systems is also analysed.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          An interactive web-based dashboard to track COVID-19 in real time

          In December, 2019, a local outbreak of pneumonia of initially unknown cause was detected in Wuhan (Hubei, China), and was quickly determined to be caused by a novel coronavirus, 1 namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak has since spread to every province of mainland China as well as 27 other countries and regions, with more than 70 000 confirmed cases as of Feb 17, 2020. 2 In response to this ongoing public health emergency, we developed an online interactive dashboard, hosted by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, Baltimore, MD, USA, to visualise and track reported cases of coronavirus disease 2019 (COVID-19) in real time. The dashboard, first shared publicly on Jan 22, illustrates the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries. It was developed to provide researchers, public health authorities, and the general public with a user-friendly tool to track the outbreak as it unfolds. All data collected and displayed are made freely available, initially through Google Sheets and now through a GitHub repository, along with the feature layers of the dashboard, which are now included in the Esri Living Atlas. The dashboard reports cases at the province level in China; at the city level in the USA, Australia, and Canada; and at the country level otherwise. During Jan 22–31, all data collection and processing were done manually, and updates were typically done twice a day, morning and night (US Eastern Time). As the outbreak evolved, the manual reporting process became unsustainable; therefore, on Feb 1, we adopted a semi-automated living data stream strategy. Our primary data source is DXY, an online platform run by members of the Chinese medical community, which aggregates local media and government reports to provide cumulative totals of COVID-19 cases in near real time at the province level in China and at the country level otherwise. Every 15 min, the cumulative case counts are updated from DXY for all provinces in China and for other affected countries and regions. For countries and regions outside mainland China (including Hong Kong, Macau, and Taiwan), we found DXY cumulative case counts to frequently lag behind other sources; we therefore manually update these case numbers throughout the day when new cases are identified. To identify new cases, we monitor various Twitter feeds, online news services, and direct communication sent through the dashboard. Before manually updating the dashboard, we confirm the case numbers with regional and local health departments, including the respective centres for disease control and prevention (CDC) of China, Taiwan, and Europe, the Hong Kong Department of Health, the Macau Government, and WHO, as well as city-level and state-level health authorities. For city-level case reports in the USA, Australia, and Canada, which we began reporting on Feb 1, we rely on the US CDC, the government of Canada, the Australian Government Department of Health, and various state or territory health authorities. All manual updates (for countries and regions outside mainland China) are coordinated by a team at Johns Hopkins University. The case data reported on the dashboard aligns with the daily Chinese CDC 3 and WHO situation reports 2 for within and outside of mainland China, respectively (figure ). Furthermore, the dashboard is particularly effective at capturing the timing of the first reported case of COVID-19 in new countries or regions (appendix). With the exception of Australia, Hong Kong, and Italy, the CSSE at Johns Hopkins University has reported newly infected countries ahead of WHO, with Hong Kong and Italy reported within hours of the corresponding WHO situation report. Figure Comparison of COVID-19 case reporting from different sources Daily cumulative case numbers (starting Jan 22, 2020) reported by the Johns Hopkins University Center for Systems Science and Engineering (CSSE), WHO situation reports, and the Chinese Center for Disease Control and Prevention (Chinese CDC) for within (A) and outside (B) mainland China. Given the popularity and impact of the dashboard to date, we plan to continue hosting and managing the tool throughout the entirety of the COVID-19 outbreak and to build out its capabilities to establish a standing tool to monitor and report on future outbreaks. We believe our efforts are crucial to help inform modelling efforts and control measures during the earliest stages of the outbreak.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Data, disease and diplomacy: GISAID's innovative contribution to global health

            Abstract The international sharing of virus data is critical for protecting populations against lethal infectious disease outbreaks. Scientists must rapidly share information to assess the nature of the threat and develop new medical countermeasures. Governments need the data to trace the extent of the outbreak, initiate public health responses, and coordinate access to medicines and vaccines. Recent outbreaks suggest, however, that the sharing of such data cannot be taken for granted – making the timely international exchange of virus data a vital global challenge. This article undertakes the first analysis of the Global Initiative on Sharing All Influenza Data as an innovative policy effort to promote the international sharing of genetic and associated influenza virus data. Based on more than 20 semi‐structured interviews conducted with key informants in the international community, coupled with analysis of a wide range of primary and secondary sources, the article finds that the Global Initiative on Sharing All Influenza Data contributes to global health in at least five ways: (1) collating the most complete repository of high‐quality influenza data in the world; (2) facilitating the rapid sharing of potentially pandemic virus information during recent outbreaks; (3) supporting the World Health Organization's biannual seasonal flu vaccine strain selection process; (4) developing informal mechanisms for conflict resolution around the sharing of virus data; and (5) building greater trust with several countries key to global pandemic preparedness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vaccine hesitancy: an overview.

              Despite being recognized as one of the most successful public health measures, vaccination is perceived as unsafe and unnecessary by a growing number of individuals. Lack of confidence in vaccines is now considered a threat to the success of vaccination programs. Vaccine hesitancy is believed to be responsible for decreasing vaccine coverage and an increasing risk of vaccine-preventable disease outbreaks and epidemics. This review provides an overview of the phenomenon of vaccine hesitancy. First, we will characterize vaccine hesitancy and suggest the possible causes of the apparent increase in vaccine hesitancy in the developed world. Then we will look at determinants of individual decision-making about vaccination.
                Bookmark

                Author and article information

                Journal
                Int J Disaster Risk Reduct
                Int J Disaster Risk Reduct
                International Journal of Disaster Risk Reduction
                Published by Elsevier Ltd.
                2212-4209
                29 April 2023
                29 April 2023
                : 103724
                Affiliations
                [a ]Global Disaster Resilience Centre, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
                [b ]National Dengue Control Unit, 7th Floor, Public Health Complex, Ministry of Health, Sri Lanka, 555/5, Elvitigala Mawatha, Colombo, Sri Lanka
                Author notes
                []Corresponding author.
                Article
                S2212-4209(23)00204-2 103724
                10.1016/j.ijdrr.2023.103724
                10148710
                37197332
                e28fcd22-1346-4544-849a-1af293915ae7
                © 2023 Published by Elsevier Ltd.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 11 November 2022
                : 20 April 2023
                : 26 April 2023
                Categories
                Article

                covid-19,pandemics,epidemics,early warnings,multi-hazard,biological-hazards

                Comments

                Comment on this article