6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The peptide GOLVEN10 alters root development and noduletaxis in Medicago truncatula

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root‐like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide‐coding genes in Medicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression of MtGLV9 and MtGLV10 at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule‐induced GLV genes in hairy roots of M. truncatula and application of their synthetic peptide analogues led to a decrease in nodule count by 25–50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term ‘noduletaxis’; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule‐related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways.

          Significance Statement

          Nodule positioning is an understudied trait, yet it determines the length of the root that can support nodule formation and consequently the total number of functional nodules formed. We identify genetic factors called GOLVEN peptides that alter nodule and lateral root positioning on the primary root along with several other traits including nodule organ initiation and root architecture.

          Related collections

          Author and article information

          Contributors
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          (View ORCID Profile)
          Journal
          The Plant Journal
          The Plant Journal
          Wiley
          0960-7412
          1365-313X
          May 2024
          February 15 2024
          May 2024
          : 118
          : 3
          : 607-625
          Affiliations
          [1 ] College of Agriculture Tennessee State University Nashville Tennessee 37209 USA
          [2 ] Noble Research Institute LLC Ardmore Oklahoma 73401 USA
          [3 ] Institute of Agricultural Biosciences Oklahoma State University Ardmore Oklahoma 73401 USA
          [4 ] Sainsbury Laboratory University of Cambridge Cambridge CB2 1LR UK
          [5 ] Shanghai Institute of Plant Physiology and Ecology Shanghai 200032 China
          [6 ] University of Queensland Brisbane Australia
          Article
          10.1111/tpj.16626
          38361340
          e230e223-8dda-412e-b706-848e8588f3a7
          © 2024

          http://creativecommons.org/licenses/by-nc/4.0/

          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content689

          Cited by1