67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cell Groups Reveal Structure of Stimulus Space

      research-article
      1 , 2 , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An important task of the brain is to represent the outside world. It is unclear how the brain may do this, however, as it can only rely on neural responses and has no independent access to external stimuli in order to “decode” what those responses mean. We investigate what can be learned about a space of stimuli using only the action potentials (spikes) of cells with stereotyped—but unknown—receptive fields. Using hippocampal place cells as a model system, we show that one can (1) extract global features of the environment and (2) construct an accurate representation of space, up to an overall scale factor, that can be used to track the animal's position. Unlike previous approaches to reconstructing position from place cell activity, this information is derived without knowing place fields or any other functions relating neural responses to position. We find that simply knowing which groups of cells fire together reveals a surprising amount of structure in the underlying stimulus space; this may enable the brain to construct its own internal representations.

          Author Summary

          We construct our understanding of the world solely from neuronal activity generated in our brains. How do we do this? Many studies have investigated how neural activity is related to outside stimuli, and maps of these relationships (often called receptive fields) are routinely computed from data collected in neuroscience experiments. Yet how the brain can understand the meaning of this activity, without the dictionary provided by these maps, remains a mystery. We tackle this fundamental question in the context of hippocampal place cells—i.e., neurons in rodent hippocampus whose activity is strongly correlated to the animal's position in space. We find that the structure of stimulus space can be revealed by exploiting relationships between groups of cofiring neurons in response to different stimuli. We provide a ‘proof of principle’ by demonstrating constructively how the topology of space and the animal's position in an environment can be derived purely from the action potentials fired by hippocampal place cells. In this way, the brain may be able to build up structured representations of stimulus spaces that are then used to represent external stimuli.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Path integration and the neural basis of the 'cognitive map'.

          The hippocampal formation can encode relative spatial location, without reference to external cues, by the integration of linear and angular self-motion (path integration). Theoretical studies, in conjunction with recent empirical discoveries, suggest that the medial entorhinal cortex (MEC) might perform some of the essential underlying computations by means of a unique, periodic synaptic matrix that could be self-organized in early development through a simple, symmetry-breaking operation. The scale at which space is represented increases systematically along the dorsoventral axis in both the hippocampus and the MEC, apparently because of systematic variation in the gain of a movement-speed signal. Convergence of spatially periodic input at multiple scales, from so-called grid cells in the entorhinal cortex, might result in non-periodic spatial firing patterns (place fields) in the hippocampus.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells.

              Using the techniques set out in the preceding paper (Muller et al., 1987), we investigated the response of place cells to changes in the animal's environment. The standard apparatus used was a cylinder, 76 cm in diameter, with walls 51 cm high. The interior was uniformly gray except for a white cue card that ran the full height of the wall and occupied 100 degrees of arc. The floor of the apparatus presented no obstacles to the animal's motions. Each of these major features of the apparatus was varied while the others were held constant. One set of manipulations involved the cue card. Rotating the cue card produced equal rotations of the firing fields of single cells. Changing the width of the card did not affect the size, shape, or radial position of firing fields, although sometimes the field rotated to a modest extent. Removing the cue card altogether also left the size, shape, and radial positions of firing fields unchanged, but caused fields to rotate to unpredictable angular positions. The second set of manipulations dealt with the size and shape of the apparatus wall. When the standard (small) cylinder was scaled up in diameter and height by a factor of 2, the firing fields of 36% of the cells observed in both cylinders also scaled, in the sense that the field stayed at the same angular position and at the same relative radial position. Of the cells recorded in both cylinders, 52% showed very different firing patterns in one cylinder than in the other. The remaining 12% of the cells were virtually silent in both cylinders. Similar results were obtained when individual cells were recorded in both a small and a large rectangular enclosure. By contrast, when the apparatus floor plan was changed from circular to rectangular, the firing pattern of a cell in an apparatus of one shape could not be predicted from a knowledge of the firing pattern in the other shape. The final manipulations involved placing vertical barriers into the otherwise unobstructed floor of the small cylinder. When an opaque barrier was set up to bisect a previously recorded firing field, in almost all cases the firing field was nearly abolished. This was true even though the barrier occupied only a small fraction of the firing field area. A transparent barrier was effective as the opaque barrier in attenuating firing fields. The lead base used to anchor the vertical barriers did not affect place cell firing.(ABSTRACT TRUNCATED AT 400 WORDS)
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                October 2008
                October 2008
                31 October 2008
                : 4
                : 10
                : e1000205
                Affiliations
                [1 ]Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
                [2 ]Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
                University College London, United Kingdom
                Author notes
                [¤]

                Current address: Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America

                Conceived and designed the experiments: CC VI. Performed the experiments: CC VI. Analyzed the data: CC VI. Contributed reagents/materials/analysis tools: CC VI. Wrote the paper: CC VI.

                Article
                08-PLCB-RA-0573R2
                10.1371/journal.pcbi.1000205
                2565599
                18974826
                e1425978-ff3a-4d8f-8ce1-7a95c99ae0fa
                Curto, Itskov. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 16 July 2008
                : 15 September 2008
                Page count
                Pages: 13
                Categories
                Research Article
                Neuroscience/Animal Cognition
                Neuroscience/Sensory Systems
                Neuroscience/Theoretical Neuroscience

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article