8
views
0
recommends
+1 Recommend
3 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Post COVID-19 Recovery and 2050 Climate Change Targets: Changing the Emphasis from Promotion of Renewables to Mandated Curtailment of Fossil Fuels in the EU Policies

      , ,
      Energies
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present work considers the dramatic changes the COVID-19 pandemic has brought to the global economy, with particular emphasis on energy. Focusing on the European Union, the article discusses the opportunities policy makers can implement to reduce the climate impacts and achieve the Paris Agreement 2050 targets. The analysis specifically looks at the fossil fuels industry and the future of the fossil sector post COVID-19 pandemic. The analysis first revises the fossil fuel sector, and then considers the need for a shift of the global climate change policy from promoting the deployment of renewable energy sources to curtailing the use of fossil fuels. This will be a change to the current global approach, from a relative passive one to a strategically dynamic and proactive one. Such a curtailment should be based on actual volumes of fossil fuels used and not on percentages. Finally, conclusions are preliminary applied to the European Union policies for net zero by 2050 based on a two-fold strategy: continuing and reinforcing the implementation of the Renewable Energy Directive to 2035, while adopting a new directive for fixed and over time increasing curtailment of fossils as of 2025 until 2050.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Global Carbon Budget 2020

          Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ± 0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The short-term impacts of COVID-19 lockdown on urban air pollution in China

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of COVID-19 lockdown on global air quality and health

              The COVID-19 pandemic has put much of the world into lockdown, as one unintended upside to this response, the air quality has been widely reported to have improved worldwide. Existing studies examine the environmental effect of lockdowns at a city- or country-level, few examines it from a global perspective. Using a novel COVID-19 government response tracker dataset, combining the daily air pollution data and weather data across 597 major cities worldwide between January 1, 2020, and July 5, 2020, this study quantifies the causal impacts of 8 types of lockdown measures on changes of a range of individual pollutants based on a difference-in-differences design. The results show that the NO2 air quality index value falls more precipitously (23 ~ 37%) relative to the pre-lockdown period, followed by PM10 (14 ~ 20%), SO2 (2 ~ 20%), PM2.5 (7 ~ 16%), and CO (7 ~ 11%), but the O3 increases 10 ~ 27%. Furthermore, intra/intercity travel restrictions have a better performance in curbing air pollution. These results are robust to a set of alternative specifications, including different panel sizes, independent variables, estimation strategies. The heterogeneity analysis in terms of different types of cities shows that the lockdown effects are more remarkable in cities from lower-income, more industrialized, and populous countries. We also do a back-of-the-envelope calculation of the subsequent health benefits following such improvement, and the expected averted premature deaths due to air pollution declines are around 99,270 to 146,649 among 76 countries and regions involved in this study during the COVID-19 lockdown. These findings underscore the importance of continuous air pollution control strategies to protect human health and reduce the associated social welfare loss both during and after the COVID-19 pandemic.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ENERGA
                Energies
                Energies
                MDPI AG
                1996-1073
                March 2021
                March 02 2021
                : 14
                : 5
                : 1347
                Article
                10.3390/en14051347
                de97f827-40fb-482c-9060-f218ba7ddebd
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article