6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Crowd‐sourced plant occurrence data provide a reliable description of macroecological gradients

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SoilGrids1km — Global Soil Information Based on Automated Mapping

          Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improving the forecast for biodiversity under climate change

            New biological models are incorporating the realistic processes underlying biological responses to climate change and other human-caused disturbances. However, these more realistic models require detailed information, which is lacking for most species on Earth. Current monitoring efforts mainly document changes in biodiversity, rather than collecting the mechanistic data needed to predict future changes. We describe and prioritize the biological information needed to inform more realistic projections of species' responses to climate change. We also highlight how trait-based approaches and adaptive modeling can leverage sparse data to make broader predictions. We outline a global effort to collect the data necessary to better understand, anticipate, and reduce the damaging effects of climate change on biodiversity.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Étude comparative de la distribution florale dans une portion des Alpes et du Jura

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Ecography
                Ecography
                Wiley
                0906-7590
                1600-0587
                May 11 2021
                Affiliations
                [1 ]Remote Sensing Centre for Earth System Research, Univ. Leipzig Leipzig Germany
                [2 ]German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐Leipzig Leipzig Germany
                [3 ]Max Planck Inst. for Biogeochemistry Jena Germany
                [4 ]Dept of Computer Science and Automation, Ilmenau Univ. of Technology Germany
                Article
                10.1111/ecog.05492
                de5237ee-2ab1-4d6d-83ab-ef3bac593f0d
                © 2021

                http://creativecommons.org/licenses/by/3.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article