There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
A new technique for the analysis of speech, the perceptual linear predictive (PLP) technique, is presented and examined. This technique uses three concepts from the psychophysics of hearing to derive an estimate of the auditory spectrum: (1) the critical-band spectral resolution, (2) the equal-loudness curve, and (3) the intensity-loudness power law. The auditory spectrum is then approximated by an autoregressive all-pole model. A 5th-order all-pole model is effective in suppressing speaker-dependent details of the auditory spectrum. In comparison with conventional linear predictive (LP) analysis, PLP analysis is more consistent with human hearing. The effective second formant F2' and the 3.5-Bark spectral-peak integration theories of vowel perception are well accounted for. PLP analysis is computationally efficient and yields a low-dimensional representation of speech. These properties are found to be useful in speaker-independent automatic-speech recognition.
The automatic conversion of English text to synthetic speech is presently being performed, remarkably well, by a number of laboratory systems and commercial devices. Progress in this area has been made possible by advances in linguistic theory, acoustic-phonetic characterization of English sound patterns, perceptual psychology, mathematical modeling of speech production, structured programming, and computer hardware design. This review traces the early work on the development of speech synthesizers, discovery of minimal acoustic cues for phonetic contrasts, evolution of phonemic rule programs, incorporation of prosodic rules, and formulation of techniques for text analysis. Examples of rules are used liberally to illustrate the state of the art. Many of the examples are taken from Klattalk, a text-to-speech system developed by the author. A number of scientific problems are identified that prevent current systems from achieving the goal of completely human-sounding speech. While the emphasis is on rule programs that drive a format synthesizer, alternatives such as articulatory synthesis and waveform concatenation are also reviewed. An extensive bibliography has been assembled to show both the breadth of synthesis activity and the wealth of phenomena covered by rules in the best of these programs. A recording of selected examples of the historical development of synthetic speech, enclosed as a 33 1/3-rpm record, is described in the Appendix.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.