10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transfer learning-based modified inception model for the diagnosis of Alzheimer's disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer's disease (AD) is a neurodegenerative ailment, which gradually deteriorates memory and weakens the cognitive functions and capacities of the body, such as recall and logic. To diagnose this disease, CT, MRI, PET, etc. are used. However, these methods are time-consuming and sometimes yield inaccurate results. Thus, deep learning models are utilized, which are less time-consuming and yield results with better accuracy, and could be used with ease. This article proposes a transfer learning-based modified inception model with pre-processing methods of normalization and data addition. The proposed model achieved an accuracy of 94.92 and a sensitivity of 94.94. It is concluded from the results that the proposed model performs better than other state-of-the-art models. For training purposes, a Kaggle dataset was used comprising 6,200 images, with 896 mild demented (M.D) images, 64 moderate demented (Mod.D) images, and 3,200 non-demented (N.D) images, and 1,966 veritably mild demented (V.M.D) images. These models could be employed for developing clinically useful results that are suitable to descry announcements in MRI images.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects.

          Mild cognitive impairment (MCI) is a transitional stage between age-related cognitive decline and Alzheimer's disease (AD). For the effective treatment of AD, it would be important to identify MCI patients at high risk for conversion to AD. In this study, we present a novel magnetic resonance imaging (MRI)-based method for predicting the MCI-to-AD conversion from one to three years before the clinical diagnosis. First, we developed a novel MRI biomarker of MCI-to-AD conversion using semi-supervised learning and then integrated it with age and cognitive measures about the subjects using a supervised learning algorithm resulting in what we call the aggregate biomarker. The novel characteristics of the methods for learning the biomarkers are as follows: 1) We used a semi-supervised learning method (low density separation) for the construction of MRI biomarker as opposed to more typical supervised methods; 2) We performed a feature selection on MRI data from AD subjects and normal controls without using data from MCI subjects via regularized logistic regression; 3) We removed the aging effects from the MRI data before the classifier training to prevent possible confounding between AD and age related atrophies; and 4) We constructed the aggregate biomarker by first learning a separate MRI biomarker and then combining it with age and cognitive measures about the MCI subjects at the baseline by applying a random forest classifier. We experimentally demonstrated the added value of these novel characteristics in predicting the MCI-to-AD conversion on data obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. With the ADNI data, the MRI biomarker achieved a 10-fold cross-validated area under the receiver operating characteristic curve (AUC) of 0.7661 in discriminating progressive MCI patients (pMCI) from stable MCI patients (sMCI). Our aggregate biomarker based on MRI data together with baseline cognitive measurements and age achieved a 10-fold cross-validated AUC score of 0.9020 in discriminating pMCI from sMCI. The results presented in this study demonstrate the potential of the suggested approach for early AD diagnosis and an important role of MRI in the MCI-to-AD conversion prediction. However, it is evident based on our results that combining MRI data with cognitive test results improved the accuracy of the MCI-to-AD conversion prediction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages.

            Neuroimaging has made it possible to measure pathological brain changes associated with Alzheimer's disease (AD) in vivo. Over the past decade, these measures have been increasingly integrated into imaging signatures of AD by means of classification frameworks, offering promising tools for individualized diagnosis and prognosis. We reviewed neuroimaging-based studies for AD and mild cognitive impairment classification, selected after online database searches in Google Scholar and PubMed (January, 1985-June, 2016). We categorized these studies based on the following neuroimaging modalities (and sub-categorized based on features extracted as a post-processing step from these modalities): i) structural magnetic resonance imaging [MRI] (tissue density, cortical surface, and hippocampal measurements), ii) functional MRI (functional coherence of different brain regions, and the strength of the functional connectivity), iii) diffusion tensor imaging (patterns along the white matter fibers), iv) fluorodeoxyglucose positron emission tomography (FDG-PET) (metabolic rate of cerebral glucose), and v) amyloid-PET (amyloid burden). The studies reviewed indicate that the classification frameworks formulated on the basis of these features show promise for individualized diagnosis and prediction of clinical progression. Finally, we provided a detailed account of AD classification challenges and addressed some future research directions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI.

              High-dimensional pattern classification was applied to baseline and multiple follow-up MRI scans of the Alzheimer's Disease Neuroimaging Initiative (ADNI) participants with mild cognitive impairment (MCI), in order to investigate the potential of predicting short-term conversion to Alzheimer's Disease (AD) on an individual basis. MCI participants that converted to AD (average follow-up 15 months) displayed significantly lower volumes in a number of grey matter (GM) regions, as well as in the white matter (WM). They also displayed more pronounced periventricular small-vessel pathology, as well as an increased rate of increase of such pathology. Individual person analysis was performed using a pattern classifier previously constructed from AD patients and cognitively normal (CN) individuals to yield an abnormality score that is positive for AD-like brains and negative otherwise. The abnormality scores measured from MCI non-converters (MCI-NC) followed a bimodal distribution, reflecting the heterogeneity of this group, whereas they were positive in almost all MCI converters (MCI-C), indicating extensive patterns of AD-like brain atrophy in almost all MCI-C. Both MCI subgroups had similar MMSE scores at baseline. A more specialized classifier constructed to differentiate converters from non-converters based on their baseline scans provided good classification accuracy reaching 81.5%, evaluated via cross-validation. These pattern classification schemes, which distill spatial patterns of atrophy to a single abnormality score, offer promise as biomarkers of AD and as predictors of subsequent clinical progression, on an individual patient basis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Comput Neurosci
                Front Comput Neurosci
                Front. Comput. Neurosci.
                Frontiers in Computational Neuroscience
                Frontiers Media S.A.
                1662-5188
                01 November 2022
                2022
                : 16
                : 1000435
                Affiliations
                [1] 1Department of Computer Science and Engineering, Chitkara University Institute of Engineering and Technology, Chandigarh , Punjab, India
                [2] 2Department of Computer Science, KIET Group of Institutions , Ghaziabad, India
                [3] 3Department of Computer Science, Kafrelsheikh University , Kafr el-Sheikh, Egypt
                [4] 4Faculty of Computer Science and Engineering, Galala University , Suez, Egypt
                [5] 5Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University , Banha, Egypt
                [6] 6Department of Information and Communication Engineering, Inha University , Incheon, South Korea
                Author notes

                Edited by: Gaurav Dhiman, Government Bikram College of Commerce Patiala, India

                Reviewed by: Asadullah Shaikh, Najran University, Saudi Arabia; Vandana Khanna, The Northcap University, India

                *Correspondence: Kyung-Sup Kwak kskwak@ 123456inha.ac.kr
                Article
                10.3389/fncom.2022.1000435
                9664223
                36387304
                ddf1fcdb-2686-45b9-9dc1-791096a1bf6a
                Copyright © 2022 Sharma, Gupta, Gupta, Juneja, Mahmoud, El–Sappagh and Kwak.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 July 2022
                : 29 August 2022
                Page count
                Figures: 9, Tables: 15, Equations: 4, References: 30, Pages: 13, Words: 5580
                Categories
                Neuroscience
                Original Research

                Neurosciences
                feature visualization,modified inception,classification,confusion matrix,alzheimer's disease

                Comments

                Comment on this article