10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Transition from fireball to Poynting-flux-dominated outflow in the three-episode GRB 160625B

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Nature Astronomy
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          BATSE observations of gamma-ray burst spectra. I - Spectral diversity

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Broadband observations of the naked-eye γ-ray burst GRB 080319B

            Long-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Physics of Gamma-Ray Bursts and Relativistic Jets

              , (2014)
              We provide a comprehensive review of major developments in our understanding of gamma-ray bursts, with particular focus on the discoveries made within the last fifteen years when their true nature was uncovered. We describe the observational properties of photons from the radio to multi-GeV bands, both in the prompt emission and the afterglow phases. Mechanisms for the generation of these photons in GRBs are discussed and confronted with observations to shed light on the physical properties of these explosions, their progenitor stars and the surrounding medium. After presenting observational evidence that a powerful, collimated, jet moving at close to the speed of light is produced in these explosions, we describe our current understanding regarding the generation, acceleration, and dissipation of the jet and compare these properties with jets associated with AGNs and pulsars. We discuss mounting observational evidence that long duration GRBs are produced when massive stars die, and that at least some short duration bursts are associated with old, roughly solar mass, compact stars. The question of whether a black-hole or a strongly magnetized, rapidly rotating neutron star is produced in these explosions is also discussed. We provide a brief summary of what we have learned about relativistic collisionless shocks and particle acceleration from GRB afterglow studies, and discuss the current understanding of radiation mechanism during the prompt emission phase. We discuss theoretical predictions of possible high-energy neutrino emission from GRBs and the current observational constraints. Finally, we discuss how these explosions may be used to study cosmology, e.g. star formation, metal enrichment, reionization history, as well as the formation of first stars and galaxies in the universe.
                Bookmark

                Author and article information

                Journal
                Nature Astronomy
                Nat Astron
                Springer Nature
                2397-3366
                January 2018
                November 20 2017
                : 2
                : 1
                : 69-75
                Article
                10.1038/s41550-017-0309-8
                ddd9c774-7de7-4f21-941e-1915ded20d2d
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article