0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immediate early genes as a molecular switch for lasting vulnerability following pubertal stress in mice

      Preprint
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Why individuals have negative consequences following stress is a complex phenomenon that is dictated by individual factors, the timing of stress within the lifespan, and when the consequences are measured. Women who undergo adverse childhood experiences are at risk for lasting biological consequences, including affective and stress dysregulation. We have shown that pubertal adversity is associated with a blunted glucocorticoid response within the hypothalamic-pituitary-adrenal axis in both peripartum humans and mice. In mice, we examined puberty-stress reprogramming in the paraventricular nucleus (PVN) of the hypothalamus, which initiates the HPA axis response. We found that pubertal stress led to an upregulation of six immediate early genes (IEGs) in the PVN of adult, pregnant mice. Separately, we showed that the pregnancy-associated hormone allopregnanolone is necessary and sufficient to produce the blunted stress response phenotype in pubertally stressed mice. Here, we examined the response of the IEGs in the PVN to the primary disruption of pubertal stress in early adolescence and to the secondary disruption of increased allopregnanolone in pregnancy. We found that in adult female, but not male, mice previously stressed during puberty, intra-PVN allopregnanolone was sufficient to recapitulate the pubertal stress associated baseline IEG expression profile. We also examined baseline IEG expression during adolescence, where we found that IEGs have sex-specific developmental trajectories that were disrupted by pubertal stress. Altogether, these data establish that IEGs can act as a key molecular switch that leads to increased vulnerability to negative outcomes in adult, pubertally stressed animals. Understanding how the factors that produce vulnerability combine throughout the lifespan will further our understanding of the etiology of negative outcomes and will help guide both the nature and timing of potential treatments.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          A robust and high-throughput Cre reporting and characterization system for the whole mouse brain

          The Cre/lox system is widely used in mice to achieve cell-type-specific gene expression. However, a strong and universal responding system to express genes under Cre control is still lacking. We have generated a set of Cre reporter mice with strong, ubiquitous expression of fluorescent proteins of different spectra. The robust native fluorescence of these reporters enables direct visualization of fine dendritic structures and axonal projections of the labeled neurons, which is useful in mapping neuronal circuitry, imaging and tracking specific cell populations in vivo. Using these reporters and a high-throughput in situ hybridization platform, we are systematically profiling Cre-directed gene expression throughout the mouse brain in a number of Cre-driver lines, including novel Cre lines targeting different cell types in the cortex. Our expression data are displayed in a public online database to help researchers assess the utility of various Cre-driver lines for cell-type-specific genetic manipulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of stress throughout the lifespan on the brain, behaviour and cognition.

            Chronic exposure to stress hormones, whether it occurs during the prenatal period, infancy, childhood, adolescence, adulthood or aging, has an impact on brain structures involved in cognition and mental health. However, the specific effects on the brain, behaviour and cognition emerge as a function of the timing and the duration of the exposure, and some also depend on the interaction between gene effects and previous exposure to environmental adversity. Advances in animal and human studies have made it possible to synthesize these findings, and in this Review a model is developed to explain why different disorders emerge in individuals exposed to stress at different times in their lives.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex.

              A key obstacle to understanding neural circuits in the cerebral cortex is that of unraveling the diversity of GABAergic interneurons. This diversity poses general questions for neural circuit analysis: how are these interneuron cell types generated and assembled into stereotyped local circuits and how do they differentially contribute to circuit operations that underlie cortical functions ranging from perception to cognition? Using genetic engineering in mice, we have generated and characterized approximately 20 Cre and inducible CreER knockin driver lines that reliably target major classes and lineages of GABAergic neurons. More select populations are captured by intersection of Cre and Flp drivers. Genetic targeting allows reliable identification, monitoring, and manipulation of cortical GABAergic neurons, thereby enabling a systematic and comprehensive analysis from cell fate specification, migration, and connectivity, to their functions in network dynamics and behavior. As such, this approach will accelerate the study of GABAergic circuits throughout the mammalian brain. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                bioRxiv
                BIORXIV
                bioRxiv
                Cold Spring Harbor Laboratory
                05 October 2023
                : 2023.10.03.559350
                Affiliations
                [1 ]Department of Psychology, West Virginia University, Morgantown, WV, USA
                [2 ]Department of Neuroscience, West Virginia University, Morgantown, WV, USA
                Author notes

                Author Contributions

                KEM designed experiments. KNG, SLH, JMM, and KEM conducted experiments, sorted, and analyzed data. KNG wrote an initial draft of the manuscript, which was edited to a final version by KEM.

                [* ]Corresponding author: Kathleen E. Morrison, Assistant Professor, kathleen.morrison@ 123456mail.wvu.edu , 304-293-1685
                Article
                10.1101/2023.10.03.559350
                10592881
                37873227
                dcecff94-3a1c-4d10-b79e-ad5d7048ee2c

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.

                History
                Categories
                Article

                stress,sex differences,puberty,transcriptome,hypothalamus,allopregnanolone

                Comments

                Comment on this article