The influence of arc energy and filler metal composition on the microstructure of additively welded thin-walled structures of duplex stainless steels was investigated using different commercially available standard and superduplex solid wire electrodes commonly used today. As welding process, the cold metal transfer (CMT) process was used. The arc energy and cooling rate were varied by adjusting the wire feed and welding speed. Optical emission spectroscopy (OES) and carrier gas melt extraction (CGME) were used to determine the chemical composition of the specimens. The ferrite content was determined both by magnetic induction and by image analysis as a function of the wall height. In addition, the microsections were examined for intermetallic phases and precipitations. Moreover, corrosion tests were carried out according to ASTM G 48, Method A. The results indicate that an increase in arc energy leads to longer t 12/8 cooling times. Depending on the filler metal composition, this leads to ferrite contents that are partially outside the values required according to ISO 17781. Furthermore, precipitates of secondary austenite are often found, which is attributed to the multiple reheating by the subsequent layers.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.