10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inequities in childhood immunisation coverage associated with socioeconomic, geographic, maternal, child, and place of birth characteristics in Kenya

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The global Immunisation Agenda 2030 highlights coverage and equity as a strategic priority goal to reach high equitable immunisation coverage at national levels and in all districts. We estimated inequities in full immunisation coverage associated with socioeconomic, geographic, maternal, child, and place of birth characteristics among children aged 12–23 months in Kenya.

          Methods

          We analysed full immunisation coverage (1-dose BCG, 3-dose DTP-HepB-Hib (diphtheria, tetanus, pertussis, hepatitis B and Haemophilus influenzae type B), 3-dose polio, 1-dose measles, and 3-dose pneumococcal vaccines) of 3943 children aged 12–23 months from the 2014 Kenya Demographic and Health Survey. We disaggregated mean coverage by socioeconomic (household wealth, religion, ethnicity), geographic (place of residence, province), maternal (maternal age at birth, maternal education, maternal marital status, maternal household head status), child (sex of child, birth order), and place of birth characteristics, and estimated inequities in full immunisation coverage using bivariate and multivariate logistic regression.

          Results

          Immunisation coverage ranged from 82% [81–84] for the third dose of polio to 97.4% [96.7–98.2] for the first dose of DTP-HepB-Hib, while full immunisation coverage was 68% [66–71] in 2014. After controlling for other background characteristics through multivariate logistic regression, children of mothers with primary school education or higher have at least 54% higher odds of being fully immunised compared to children of mothers with no education. Children born in clinical settings had 41% higher odds of being fully immunised compared to children born in home settings. Children in the Coast, Western, Central, and Eastern regions had at least 74% higher odds of being fully immunised compared to children in the North Eastern region, while children in urban areas had 26% lower odds of full immunisation compared to children in rural areas. Children in the middle and richer wealth quintile households were 43–57% more likely to have full immunisation coverage compared to children in the poorest wealth quintile households. Children who were sixth born or higher had 37% lower odds of full immunisation compared to first-born children.

          Conclusions

          Children of mothers with no education, born in home settings, in regions with limited health infrastructure, living in poorer households, and of higher birth order are associated with lower rates of full immunisation. Targeted programmes to reach under-immunised children in these subpopulations will lower the inequities in childhood immunisation coverage in Kenya.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12879-021-06271-9.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

          Summary Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Routine childhood immunisation during the COVID-19 pandemic in Africa: a benefit–risk analysis of health benefits versus excess risk of SARS-CoV-2 infection

            Summary Background National immunisation programmes globally are at risk of suspension due to the severe health system constraints and physical distancing measures in place to mitigate the ongoing COVID-19 pandemic. We aimed to compare the health benefits of sustaining routine childhood immunisation in Africa with the risk of acquiring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through visiting routine vaccination service delivery points. Methods We considered a high-impact scenario and a low-impact scenario to approximate the child deaths that could be caused by immunisation coverage reductions during COVID-19 outbreaks. In the high-impact scenario, we used previously reported country-specific child mortality impact estimates of childhood immunisation for diphtheria, tetanus, pertussis, hepatitis B, Haemophilus influenzae type b, Streptococcus pneumoniae, rotavirus, measles, meningitis A, rubella, and yellow fever to approximate the future deaths averted before 5 years of age by routine childhood vaccination during a 6-month COVID-19 risk period without catch-up campaigns. In the low-impact scenario, we approximated the health benefits of sustaining routine childhood immunisation on only the child deaths averted from measles outbreaks during the COVID-19 risk period. We assumed that contact-reducing interventions flattened the outbreak curve during the COVID-19 risk period, that 60% of the population will have been infected by the end of that period, that children can be infected by either vaccinators or during transport, and that upon child infection the whole household will be infected. Country-specific household age structure estimates and age-dependent infection-fatality rates were applied to calculate the number of deaths attributable to the vaccination clinic visits. We present benefit–risk ratios for routine childhood immunisation, with 95% uncertainty intervals (UIs) from a probabilistic sensitivity analysis. Findings In the high-impact scenario, for every one excess COVID-19 death attributable to SARS-CoV-2 infections acquired during routine vaccination clinic visits, 84 (95% UI 14–267) deaths in children could be prevented by sustaining routine childhood immunisation in Africa. The benefit–risk ratio for the vaccinated children is 85 000 (4900–546 000), for their siblings ( 60 years) is 96 (14–307). In the low-impact scenario that approximates the health benefits to only the child deaths averted from measles outbreaks, the benefit–risk ratio to the households of vaccinated children is 3 (0–10); if the risk to only the vaccinated children is considered, the benefit–risk ratio is 3000 (182–21 000). Interpretation The deaths prevented by sustaining routine childhood immunisation in Africa outweigh the excess risk of COVID-19 deaths associated with vaccination clinic visits, especially for the vaccinated children. Routine childhood immunisation should be sustained in Africa as much as possible, while considering other factors such as logistical constraints, staff shortages, and reallocation of resources during the COVID-19 pandemic. Funding Gavi, the Vaccine Alliance; Bill & Melinda Gates Foundation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Why children are not vaccinated: a review of the grey literature.

              In collaboration with WHO, IMMUNIZATION basics analyzed 126 documents from the global grey literature to identify reasons why eligible children had incomplete or no vaccinations. The main reasons for under-vaccination were related to immunization services and to parental knowledge and attitudes. The most frequently cited factors were: access to services, health staff attitudes and practices, reliability of services, false contraindications, parents' practical knowledge of vaccination, fear of side effects, conflicting priorities and parental beliefs. Some family demographic characteristics were strong, but underlying, risk factors for under-vaccination. Studies must be well designed to capture a complete picture of the simultaneous causes of under-vaccination and to avoid biased results. Although the grey literature contains studies of varying quality, it includes many well-designed studies. Every immunization program should strive to provide quality services that are accessible, convenient, reliable, friendly, affordable and acceptable, and should solicit feedback from families and community leaders. Every program should monitor missed and under-vaccinated children and assess and address the causes. Although global reviews, such as this one, can play a useful role in identifying key questions for local study, local enquiry and follow-up remain essential.
                Bookmark

                Author and article information

                Contributors
                sallan@gavi.org
                iadetifa@kemri-wellcome.org
                kaja.abbas@lshtm.ac.uk
                Journal
                BMC Infect Dis
                BMC Infect Dis
                BMC Infectious Diseases
                BioMed Central (London )
                1471-2334
                11 June 2021
                11 June 2021
                2021
                : 21
                : 553
                Affiliations
                [1 ]GRID grid.452434.0, ISNI 0000 0004 0623 3227, Gavi, the Vaccine Alliance, ; Geneva, Switzerland
                [2 ]GRID grid.8991.9, ISNI 0000 0004 0425 469X, London School of Hygiene and Tropical Medicine, ; London, UK
                [3 ]GRID grid.33058.3d, ISNI 0000 0001 0155 5938, KEMRI-Wellcome Trust Research Programme, ; Kilifi, Kenya
                Author information
                https://orcid.org/0000-0003-2556-9407
                https://orcid.org/0000-0003-0563-1576
                Article
                6271
                10.1186/s12879-021-06271-9
                8192222
                34112096
                dcab7d00-90c5-4a40-a68c-f1a7f2ac4ae5
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 8 March 2021
                : 31 May 2021
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Infectious disease & Microbiology
                full immunisation coverage,vaccine equity,kenya,demographic and health survey

                Comments

                Comment on this article