58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Metagenomic Analysis of Pandemic Influenza A (2009 H1N1) Infection in Patients from North America

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although metagenomics has been previously employed for pathogen discovery, its cost and complexity have prevented its use as a practical front-line diagnostic for unknown infectious diseases. Here we demonstrate the utility of two metagenomics-based strategies, a pan-viral microarray (Virochip) and deep sequencing, for the identification and characterization of 2009 pandemic H1N1 influenza A virus. Using nasopharyngeal swabs collected during the earliest stages of the pandemic in Mexico, Canada, and the United States (n = 17), the Virochip was able to detect a novel virus most closely related to swine influenza viruses without a priori information. Deep sequencing yielded reads corresponding to 2009 H1N1 influenza in each sample (percentage of aligned sequences corresponding to 2009 H1N1 ranging from 0.0011% to 10.9%), with up to 97% coverage of the influenza genome in one sample. Detection of 2009 H1N1 by deep sequencing was possible even at titers near the limits of detection for specific RT-PCR, and the percentage of sequence reads was linearly correlated with virus titer. Deep sequencing also provided insights into the upper respiratory microbiota and host gene expression in response to 2009 H1N1 infection. An unbiased analysis combining sequence data from all 17 outbreak samples revealed that 90% of the 2009 H1N1 genome could be assembled de novo without the use of any reference sequence, including assembly of several near full-length genomic segments. These results indicate that a streamlined metagenomics detection strategy can potentially replace the multiple conventional diagnostic tests required to investigate an outbreak of a novel pathogen, and provide a blueprint for comprehensive diagnosis of unexplained acute illnesses or outbreaks in clinical and public health settings.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization of a novel coronavirus associated with severe acute respiratory syndrome.

          P Rota (2003)
          In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antiviral actions of interferons.

            C Samuel (2001)
            Tremendous progress has been made in understanding the molecular basis of the antiviral actions of interferons (IFNs), as well as strategies evolved by viruses to antagonize the actions of IFNs. Furthermore, advances made while elucidating the IFN system have contributed significantly to our understanding in multiple areas of virology and molecular cell biology, ranging from pathways of signal transduction to the biochemical mechanisms of transcriptional and translational control to the molecular basis of viral pathogenesis. IFNs are approved therapeutics and have moved from the basic research laboratory to the clinic. Among the IFN-induced proteins important in the antiviral actions of IFNs are the RNA-dependent protein kinase (PKR), the 2',5'-oligoadenylate synthetase (OAS) and RNase L, and the Mx protein GTPases. Double-stranded RNA plays a central role in modulating protein phosphorylation and RNA degradation catalyzed by the IFN-inducible PKR kinase and the 2'-5'-oligoadenylate-dependent RNase L, respectively, and also in RNA editing by the IFN-inducible RNA-specific adenosine deaminase (ADAR1). IFN also induces a form of inducible nitric oxide synthase (iNOS2) and the major histocompatibility complex class I and II proteins, all of which play important roles in immune response to infections. Several additional genes whose expression profiles are altered in response to IFN treatment and virus infection have been identified by microarray analyses. The availability of cDNA and genomic clones for many of the components of the IFN system, including IFN-alpha, IFN-beta, and IFN-gamma, their receptors, Jak and Stat and IRF signal transduction components, and proteins such as PKR, 2',5'-OAS, Mx, and ADAR, whose expression is regulated by IFNs, has permitted the generation of mutant proteins, cells that overexpress different forms of the proteins, and animals in which their expression has been disrupted by targeted gene disruption. The use of these IFN system reagents, both in cell culture and in whole animals, continues to provide important contributions to our understanding of the virus-host interaction and cellular antiviral response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SSAHA: a fast search method for large DNA databases.

              We describe an algorithm, SSAHA (Sequence Search and Alignment by Hashing Algorithm), for performing fast searches on databases containing multiple gigabases of DNA. Sequences in the database are preprocessed by breaking them into consecutive k-tuples of k contiguous bases and then using a hash table to store the position of each occurrence of each k-tuple. Searching for a query sequence in the database is done by obtaining from the hash table the "hits" for each k-tuple in the query sequence and then performing a sort on the results. We discuss the effect of the tuple length k on the search speed, memory usage, and sensitivity of the algorithm and present the results of computational experiments which show that SSAHA can be three to four orders of magnitude faster than BLAST or FASTA, while requiring less memory than suffix tree methods. The SSAHA algorithm is used for high-throughput single nucleotide polymorphism (SNP) detection and very large scale sequence assembly. Also, it provides Web-based sequence search facilities for Ensembl projects.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                18 October 2010
                : 5
                : 10
                : e13381
                Affiliations
                [1 ]Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
                [2 ]Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
                [3 ]UCSF-Abbott Viral Diagnostics and Discovery Center, University of California San Francisco, San Francisco, California, United States of America
                [4 ]Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
                [5 ]Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
                [6 ]British Columbia Centre for Disease Control and University of British Columbia, Vancouver, British Columbia, Canada
                [7 ]Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
                [8 ]Ontario Agency for Health Protection and Promotion, Toronto, Ontario, Canada
                [9 ]Mt. Sinai Hospital, Toronto, Ontario, Canada
                [10 ]Instituto de Biotechnología, Universidad National Autónoma de Mexico, Cuernavaca, Mexico
                [11 ]Abbott Diagnostics, Abbott Park, Illinois, United States of America
                University of Georgia, United States of America
                Author notes

                Conceived and designed the experiments: ALG SM PT CYC. Performed the experiments: ALG ECC NR GY PI CYC. Analyzed the data: ALG ECC TS AS NR EK PT CYC. Contributed reagents/materials/analysis tools: TS DRP CG TM PI CFA JH GS SM PT CYC. Wrote the paper: ALG ECC TS SM PT CYC.

                Article
                10-PONE-RA-21677R1
                10.1371/journal.pone.0013381
                2956640
                20976137
                dc83971a-b10a-493d-894a-4def913b3e63
                Greninger et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 July 2010
                : 21 September 2010
                Page count
                Pages: 16
                Categories
                Research Article
                Computational Biology/Genomics
                Genetics and Genomics/Genomics
                Microbiology/Microbial Evolution and Genomics
                Virology/Diagnosis
                Virology/Emerging Viral Diseases
                Virology/Host Antiviral Responses
                Infectious Diseases/Respiratory Infections
                Infectious Diseases/Viral Infections

                Uncategorized
                Uncategorized

                Comments

                Comment on this article