9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Removal of organic compounds by nanoscale zero-valent iron and its composites

      , , , , , , ,
      Science of The Total Environment
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references176

          • Record: found
          • Abstract: found
          • Article: not found

          The use of zero-valent iron for groundwater remediation and wastewater treatment: a review.

          Recent industrial and urban activities have led to elevated concentrations of a wide range of contaminants in groundwater and wastewater, which affect the health of millions of people worldwide. In recent years, the use of zero-valent iron (ZVI) for the treatment of toxic contaminants in groundwater and wastewater has received wide attention and encouraging treatment efficiencies have been documented. This paper gives an overview of the recent advances of ZVI and progress obtained during the groundwater remediation and wastewater treatment utilizing ZVI (including nanoscale zero-valent iron (nZVI)) for the removal of: (a) chlorinated organic compounds, (b) nitroaromatic compounds, (c) arsenic, (d) heavy metals, (e) nitrate, (f) dyes, and (g) phenol. Reaction mechanisms and removal efficiencies were studied and evaluated. It was found that ZVI materials with wide availability have appreciable removal efficiency for several types of contaminants. Concerning ZVI for future research, some suggestions are proposed and conclusions have been drawn. Copyright © 2014 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Orderly Porous Covalent Organic Frameworks-based Materials: Superior Adsorbents for Pollutants Removal from Aqueous Solutions

            Summary Covalent organic frameworks (COFs) are a new type of crystalline porous polymers known for chemical stability, excellent structural regularity, robust framework, and inherent porosity, making them promising materials for capturing various types of pollutants from aqueous solutions. This review thoroughly presents the recent progress and advances of COFs and COF-based materials as superior adsorbents for the efficient removal of toxic heavy metal ions, radionuclides, and organic pollutants. Information about the interaction mechanisms between various pollutants and COF-based materials are summarized from the macroscopic and microscopic standpoints, including batch experiments, theoretical calculations, and advanced spectroscopy analysis. The adsorption properties of various COF-based materials are assessed and compared with other widely used adsorbents. Several commonly used strategies to enhance COF-based materials’ adsorption performance and the relationship between structural property and sorption ability are also discussed. Finally, a summary and perspective on the opportunities and challenges of COFs and COF-based materials are proposed to provide some inspiring information on designing and fabricating COFs and COF-based materials for environmental pollution management.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay.

              Most nonenzymatic antioxidant activity (scavenging of free radicals, inhibition of lipid peroxidation, etc.) is mediated by redox reactions. The antioxidant (AO) activity of polyphenols (PPs), as ferric-reducing power, was determined for the first time using a modified FRAP (ferric reducing/antioxidant power) assay. Reaction was followed for 30 min, and both Fe(II) standards and samples were dissolved in the same solvent to allow comparison. Selected representative PPs included flavonoids (quercetin, rutin, and catechin), resveratrol, tannic acid, and phenolic acids (gallic, caffeic, and ferulic). Carotenoids (beta-carotene and zeaxanthine), ascorbic acid, Trolox, and BHA were included for comparison. Equivalent concentration 1 (EC(1)), as the concentration of AO with a reducing effect equivalent to 1 mmol/L Fe(II), was used to compare AO efficiency. PPs had lower EC(1) values, and therefore higher reducing power, than ascorbic acid and Trolox. Tannic acid and quercetin had the highest AO capacity followed by gallic and caffeic acids. Resveratrol showed the lowest reducing effect. Carotenoids had no ferric reducing ability. Polyphenol's AO efficiency seemed to depend on the extent of hydroxylation and conjugation.
                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                October 2021
                October 2021
                : 792
                : 148546
                Article
                10.1016/j.scitotenv.2021.148546
                34465057
                dc574bc9-dee2-4d37-a1be-22226b5bdc37
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article