1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Liquid Interfacial SERS Platform on a Nanoparticle Array Stabilized by Rigid Probes for the Quantification of Norepinephrine in Rat Brain Microdialysates

      1 , 1 , 1 , 1
      Angewandte Chemie International Edition
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions

          G. FRENS (1973)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Measurement of the distribution of site enhancements in surface-enhanced Raman scattering.

            On nanotextured noble-metal surfaces, surface-enhanced Raman scattering (SERS) is observed, where Raman scattering is enhanced by a factor, G, that is frequently about one million, but underlying the factor G is a broad distribution of local enhancement factors, eta. We have measured this distribution for benzenethiolate molecules on a 330-nanometer silver-coated nanosphere lattice using incident light of wavelength 532 nanometers. A series of laser pulses with increasing electric fields burned away molecules at sites with progressively decreasing electromagnetic enhancement factors. The enhancement distribution P(eta)deta was found to be a power law proportional to (eta)(-1.75), with minimum and maximum values of 2.8 x 10(4) and 4.1 x 10(10), respectively. The hottest sites (eta >10(9)) account for just 63 in 1,000,000 of the total but contribute 24% to the overall SERS intensity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection of Norepinephrine

              Norepinephrine (NE) is a key biogenic monoamine neurotransmitter involved in a wide range of physiological processes. However, its precise dynamics and regulation remain poorly characterized, in part due to limitations of available techniques for measuring NE in vivo. Here, we developed a family of GPCR activation-based NE (GRABNE) sensors with a 230% peak ΔF/F0 response to NE, good photostability, nanomolar-to-micromolar sensitivities, sub-second kinetics, and high specificity. Viral- or transgenic-mediated expression of GRABNE sensors was able to detect electrical-stimulation-evoked NE release in the locus coeruleus (LC) of mouse brain slices, looming-evoked NE release in the midbrain of live zebrafish, as well as optogenetically and behaviorally triggered NE release in the LC and hypothalamus of freely moving mice. Thus, GRABNE sensors are robust tools for rapid and specific monitoring of in vivo NE transmission in both physiological and pathological processes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Angewandte Chemie International Edition
                Angew Chem Int Ed
                Wiley
                1433-7851
                1521-3773
                May 16 2022
                March 23 2022
                May 16 2022
                : 61
                : 21
                Affiliations
                [1 ]Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Dongchuan Road 500 Shanghai 200241 China
                Article
                10.1002/anie.202117125
                dbb9c6bc-a53a-4624-84a2-1734835bca9f
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article