16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Is it time to put rest to rest?

      Trends in Cognitive Sciences
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: not found

          Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.

          An MRI time course of 512 echo-planar images (EPI) in resting human brain obtained every 250 ms reveals fluctuations in signal intensity in each pixel that have a physiologic origin. Regions of the sensorimotor cortex that were activated secondary to hand movement were identified using functional MRI methodology (FMRI). Time courses of low frequency (< 0.1 Hz) fluctuations in resting brain were observed to have a high degree of temporal correlation (P < 10(-3)) within these regions and also with time courses in several other regions that can be associated with motor function. It is concluded that correlation of low frequency fluctuations, which may arise from fluctuations in blood oxygenation or flow, is a manifestation of functional connectivity of the brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Correspondence of the brain's functional architecture during activation and rest.

            Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is "at rest." In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically "active" even when at "rest."
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Large-scale automated synthesis of human functional neuroimaging data

              The explosive growth of the human neuroimaging literature has led to major advances in understanding of human brain function, but has also made aggregation and synthesis of neuroimaging findings increasingly difficult. Here we describe and validate an automated brain mapping framework that uses text mining, meta-analysis and machine learning techniques to generate a large database of mappings between neural and cognitive states. We demonstrate the capacity of our approach to automatically conduct large-scale, high-quality neuroimaging meta-analyses, address long-standing inferential problems in the neuroimaging literature, and support accurate ‘decoding’ of broad cognitive states from brain activity in both entire studies and individual human subjects. Collectively, our results validate a powerful and generative framework for synthesizing human neuroimaging data on an unprecedented scale.
                Bookmark

                Author and article information

                Journal
                Trends in Cognitive Sciences
                Trends in Cognitive Sciences
                Elsevier BV
                13646613
                October 2021
                October 2021
                Article
                10.1016/j.tics.2021.09.005
                34625348
                db931633-3bb9-48ec-8e2a-05b926a3b6a1
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article