13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of multispanning membrane protein topology via post-translational annealing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The canonical mechanism for multispanning membrane protein topogenesis suggests that protein topology is established during cotranslational membrane integration. However, this mechanism is inconsistent with the behavior of EmrE, a dual-topology protein for which the mutation of positively charged loop residues, even close to the C-terminus, leads to dramatic shifts in its topology. We use coarse-grained simulations to investigate the Sec-facilitated membrane integration of EmrE and its mutants on realistic biological timescales. This work reveals a mechanism for regulating membrane-protein topogenesis, in which initially misintegrated configurations of the proteins undergo post-translational annealing to reach fully integrated multispanning topologies. The energetic barriers associated with this post-translational annealing process enforce kinetic pathways that dictate the topology of the fully integrated proteins. The proposed mechanism agrees well with the experimentally observed features of EmrE topogenesis and provides a range of experimentally testable predictions regarding the effect of translocon mutations on membrane protein topogenesis.

          DOI: http://dx.doi.org/10.7554/eLife.08697.001

          eLife digest

          Proteins are long chains of smaller molecules called amino acids, and are built inside cells by a molecular machine called the ribosome. Many important proteins must be inserted into the membrane that surrounds each cell in order to carry out their role. As these proteins are being built by the ribosome, they thread their way into a membrane-spanning channel (called the translocon) from the inner side of the membrane. Short segments of these integral membrane proteins (called transmembrane domains) then become embedded in the membrane, while other parts of the protein remain on either side of the membrane.

          For a membrane protein to work properly, the end of each of its transmembrane domains must be on the correct side of the membrane (i.e., the protein must obtain the correct ‘topology’). The conventional model for this process suggests that topology is fixed when the first transmembrane domain of a protein is initially integrated into the membrane, while the ribosome is still building the protein. This model can explain most integral membrane proteins, which only have a single topology. However, it cannot explain the family of membrane proteins that have an almost equal chance of adopting one of two different topologies (so-called ‘dual-topology proteins’).

          Van Lehn et al. have now used computer modeling to simulate how a bacterial protein called EmrE (which is a dual-topology protein) integrates into the membrane via the translocon. The results reveal that a few transmembrane domains in EmrE do not fully integrate into the membrane while the ribosome is building the protein. Instead, these transmembrane domains slowly integrate after the ribosome has finished its job.

          These findings contradict the conventional model and suggest that some membrane proteins only become fully integrated after the protein-building process is complete. The next step in this work is to experimentally test predictions from the computer simulations.

          DOI: http://dx.doi.org/10.7554/eLife.08697.002

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          X-ray structure of a protein-conducting channel.

          A conserved heterotrimeric membrane protein complex, the Sec61 or SecY complex, forms a protein-conducting channel, allowing polypeptides to be transferred across or integrated into membranes. We report the crystal structure of the complex from Methanococcus jannaschii at a resolution of 3.2 A. The structure suggests that one copy of the heterotrimer serves as a functional translocation channel. The alpha-subunit has two linked halves, transmembrane segments 1-5 and 6-10, clamped together by the gamma-subunit. A cytoplasmic funnel leading into the channel is plugged by a short helix. Plug displacement can open the channel into an 'hourglass' with a ring of hydrophobic residues at its constriction. This ring may form a seal around the translocating polypeptide, hindering the permeation of other molecules. The structure also suggests mechanisms for signal-sequence recognition and for the lateral exit of transmembrane segments of nascent membrane proteins into lipid, and indicates binding sites for partners that provide the driving force for translocation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recognition of transmembrane helices by the endoplasmic reticulum translocon.

            Membrane proteins depend on complex translocation machineries for insertion into target membranes. Although it has long been known that an abundance of nonpolar residues in transmembrane helices is the principal criterion for membrane insertion, the specific sequence-coding for transmembrane helices has not been identified. By challenging the endoplasmic reticulum Sec61 translocon with an extensive set of designed polypeptide segments, we have determined the basic features of this code, including a 'biological' hydrophobicity scale. We find that membrane insertion depends strongly on the position of polar residues within transmembrane segments, adding a new dimension to the problem of predicting transmembrane helices from amino acid sequences. Our results indicate that direct protein-lipid interactions are critical during translocon-mediated membrane insertion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              TOPCONS: consensus prediction of membrane protein topology

              TOPCONS (http://topcons.net/) is a web server for consensus prediction of membrane protein topology. The underlying algorithm combines an arbitrary number of topology predictions into one consensus prediction and quantifies the reliability of the prediction based on the level of agreement between the underlying methods, both on the protein level and on the level of individual TM regions. Benchmarking the method shows that overall performance levels match the best available topology prediction methods, and for sequences with high reliability scores, performance is increased by ∼10 percentage points. The web interface allows for constraining parts of the sequence to a known inside/outside location, and detailed results are displayed both graphically and in text format.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                2050-084X
                26 September 2015
                2015
                : 4
                : e08697
                Affiliations
                [1 ]deptDivision of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena, United States
                The Max Planck Institute of Biophysics , Germany
                The Max Planck Institute of Biophysics , Germany
                Author notes
                [* ]For correspondence: tfm@ 123456caltech.edu
                Article
                08697
                10.7554/eLife.08697
                4635508
                26408961
                db7fd450-a4df-46bb-9da6-b43b9ea960aa
                © 2015, Van Lehn et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 14 May 2015
                : 25 September 2015
                Funding
                Funded by: National Institute of General Medical Sciences (NIGMS);
                Award ID: Ruth Kirschtein Postdoctoral Fellowship 1F32GM113334-01
                Award Recipient :
                The funder had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Biochemistry
                Biophysics and Structural Biology
                Custom metadata
                2.3
                Coarse-grained modeling reveals a new mechanism for multispanning membrane protein topogenesis, in which misintegrated configurations of the proteins undergo post-translational annealing to reach final, fully integrated multispanning topologies.

                Life sciences
                membrane protein topology,simulation,dual-topology,topogenesis,none
                Life sciences
                membrane protein topology, simulation, dual-topology, topogenesis, none

                Comments

                Comment on this article