3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A highly compressible hydrogel electrolyte for flexible Zn-MnO2 battery

      , , , , ,
      Journal of Colloid and Interface Science
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage.

          Carbon-based supercapacitors can provide high electrical power, but they do not have sufficient energy density to directly compete with batteries. We found that a nitrogen-doped ordered mesoporous few-layer carbon has a capacitance of 855 farads per gram in aqueous electrolytes and can be bipolarly charged or discharged at a fast, carbon-like speed. The improvement mostly stems from robust redox reactions at nitrogen-associated defects that transform inert graphene-like layered carbon into an electrochemically active substance without affecting its electric conductivity. These bipolar aqueous-electrolyte electrochemical cells offer power densities and lifetimes similar to those of carbon-based supercapacitors and can store a specific energy of 41 watt-hours per kilogram (19.5 watt-hours per liter).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stretchable, transparent, ionic conductors.

            Existing stretchable, transparent conductors are mostly electronic conductors. They limit the performance of interconnects, sensors, and actuators as components of stretchable electronics and soft machines. We describe a class of devices enabled by ionic conductors that are highly stretchable, fully transparent to light of all colors, and capable of operation at frequencies beyond 10 kilohertz and voltages above 10 kilovolts. We demonstrate a transparent actuator that can generate large strains and a transparent loudspeaker that produces sound over the entire audible range. The electromechanical transduction is achieved without electrochemical reaction. The ionic conductors have higher resistivity than many electronic conductors; however, when large stretchability and high transmittance are required, the ionic conductors have lower sheet resistance than all existing electronic conductors.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Advanced rechargeable zinc-based batteries: Recent progress and future perspectives

                Bookmark

                Author and article information

                Journal
                Journal of Colloid and Interface Science
                Journal of Colloid and Interface Science
                Elsevier BV
                00219797
                February 2022
                February 2022
                : 608
                : 1619-1626
                Article
                10.1016/j.jcis.2021.10.121
                da5a0ba5-9f8e-46a6-b9fe-0fb0ddc36746
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article