3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of pertussis toxin-sensitive G protein in metabolic vasodilation of coronary microcirculation.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have previously demonstrated that pertussis toxin (PTX)-sensitive G protein (G(PTX)) plays a major role in coronary microvascular vasomotion during hypoperfusion. We aimed to elucidate the role of G(PTX) during increasing metabolic demand. In 18 mongrel dogs, coronary arteriolar diameters were measured by fluorescence microangiography using a floating objective. Myocardial oxygen consumption (MVO(2)) was increased by rapid left atrial pacing. In six dogs, PTX (300 ng/ml) was superfused onto the heart surface for 2 h to locally block G(PTX). In eight dogs, the vehicle (Krebs solution) was superfused in the same way. Before and after each treatment, the diameters were measured during control (130 beats/min) and rapid pacing (260 beats/min) in each group. Metabolic stimulation before and after the vehicle treatment caused 8.6 +/- 1. 8 and 16.1 +/- 3.6% dilation of coronary arterioles <100 microm in diameter (57 +/- 8 microm at control, n = 10), respectively. PTX treatment clearly abolished the dilation of arterioles (12.8 +/- 2. 5% before and 0.9 +/- 1.6% after the treatment, P < 0.001 vs. vehicle; 66 +/- 8 microm at control, n = 11) in response to metabolic stimulation. The increases in MVO(2) and coronary flow velocity were comparable between the vehicle and PTX groups. In four dogs, 8-phenyltheophylline (10 microM, superfusion for 30 min) did not affect the metabolic dilation of arterioles (15.3 +/- 2.0% before and 16.4 +/- 3.8% after treatment; 84.3 +/- 11.0 microm at control, n = 8). Thus we conclude that G(PTX) plays a major role in regulating the coronary microvascular tone during active hyperemia, and adenosine does not contribute to metabolic vasodilation via G(PTX) activation.

          Related collections

          Author and article information

          Journal
          Am J Physiol Heart Circ Physiol
          American journal of physiology. Heart and circulatory physiology
          American Physiological Society
          0363-6135
          0363-6135
          Oct 2000
          : 279
          : 4
          Affiliations
          [1 ] First Department of Internal Medicine and Department of Comprehensive Medicine, Tohoku University, School of Medicine, Seiryo-machi, Aoba-ku, Sendai, 980-8574 Japan.
          Article
          10.1152/ajpheart.2000.279.4.H1819
          11009469
          d9fc1b94-b62b-4fb1-bccf-9950897146f0
          History

          Comments

          Comment on this article