5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Basis of Müllerian Agenesis Causing Congenital Uterine Factor Infertility—A Systematic Review

      , , ,
      International Journal of Molecular Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infertility affects around 1 in 5 couples in the world. Congenital absence of the uterus results in absolute infertility in females. Müllerian agenesis is the nondevelopment of the uterus. Mayer–Rokitansky–Küster–Hauser (MRKH) syndrome is a condition of uterovaginal agenesis in the presence of normal ovaries and the 46 XX Karyotype. With advancements in reproductive techniques, women with MA having biological offspring is possible. The exact etiology of MA is unknown, although several genes and mechanisms affect the development of Müllerian ducts. Through this systematic review of the available literature, we searched for the genetic basis of MA. The aims included identification of the genes, chromosomal locations, changes responsible for MA, and fertility options, in order to offer proper management and counseling to these women with MA. A total of 85 studies were identified through searches. Most of the studies identified multiple genes at various locations, although the commonest involved chromosomes 1, 17, and 22. There is also conflicting evidence of the involvement of various candidate genes in the studies. The etiology of MA seems to be multifactorial and complex, involving multiple genes and mechanisms including various mutations and mosaicism.

          Related collections

          Most cited references173

          • Record: found
          • Abstract: found
          • Article: not found

          The Third Revolution in Sequencing Technology.

          Forty years ago the advent of Sanger sequencing was revolutionary as it allowed complete genome sequences to be deciphered for the first time. A second revolution came when next-generation sequencing (NGS) technologies appeared, which made genome sequencing much cheaper and faster. However, NGS methods have several drawbacks and pitfalls, most notably their short reads. Recently, third-generation/long-read methods appeared, which can produce genome assemblies of unprecedented quality. Moreover, these technologies can directly detect epigenetic modifications on native DNA and allow whole-transcript sequencing without the need for assembly. This marks the third revolution in sequencing technology. Here we review and compare the various long-read methods. We discuss their applications and their respective strengths and weaknesses and provide future perspectives.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Female development in mammals is regulated by Wnt-4 signalling.

            In the mammalian embryo, both sexes are initially morphologically indistinguishable: specific hormones are required for sex-specific development. Mullerian inhibiting substance and testosterone secreted by the differentiating embryonic testes result in the loss of female (Mullerian) or promotion of male (Wolffian) reproductive duct development, respectively. The signalling molecule Wnt-4 is crucial for female sexual development. At birth, sexual development in males with a mutation in Wnt-4 appears to be normal; however, Wnt-4-mutant females are masculinized-the Mullerian duct is absent while the Wolffian duct continues to develop. Wnt-4 is initially required in both sexes for formation of the Mullerian duct, then Wnt-4 in the developing ovary appears to suppress the development of Leydig cells; consequently, Wnt-4-mutant females ectopically activate testosterone biosynthesis. Wnt-4 may also be required for maintenance of the female germ line. Thus, the establishment of sexual dimorphism is under the control of both local and systemic signals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system.

              The vertebrate urogenital system forms due to inductive interactions between the Wolffian duct, its derivative the ureteric bud, and their adjacent mesenchymes. These establish epithelial primordia within the mesonephric (embryonic) and metanephric (adult) kidneys and the Müllerian duct, the anlage of much of the female reproductive tract. We show that Wnt9b is expressed in the inductive epithelia and is essential for the development of mesonephric and metanephric tubules and caudal extension of the Müllerian duct. Wnt9b is required for the earliest inductive response in metanephric mesenchyme. Further, Wnt9b-expressing cells can functionally substitute for the ureteric bud in these interactions. Wnt9b acts upstream of another Wnt, Wnt4, in this process, and our data implicate canonical Wnt signaling as one of the major pathways in the organization of the mammalian urogenital system. Together these findings suggest that Wnt9b is a common organizing signal regulating diverse components of the mammalian urogenital system.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                January 2024
                December 21 2023
                : 25
                : 1
                : 120
                Article
                10.3390/ijms25010120
                d9bbc47a-6948-4baf-ba1f-d73992390eb1
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article