49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activation and Alliance of Regulatory Pathways in C. albicans during Mammalian Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gene expression dynamics have provided foundational insight into almost all biological processes. Here, we analyze expression of environmentally responsive genes and transcription factor genes to infer signals and pathways that drive pathogen gene regulation during invasive Candida albicans infection of a mammalian host. Environmentally responsive gene expression shows that there are early and late phases of infection. The early phase includes induction of zinc and iron limitation genes, genes that respond to transcription factor Rim101, and genes characteristic of invasive hyphal cells. The late phase includes responses related to phagocytosis by macrophages. Transcription factor gene expression also reflects early and late phases. Transcription factor genes that are required for virulence or proliferation in vivo are enriched among highly expressed transcription factor genes. Mutants defective in six transcription factor genes, three previously studied in detail (Rim101, Efg1, Zap1) and three less extensively studied (Rob1, Rpn4, Sut1), are profiled during infection. Most of these mutants have distinct gene expression profiles during infection as compared to in vitro growth. Infection profiles suggest that Sut1 acts in the same pathway as Zap1, and we verify that functional relationship with the finding that overexpression of either ZAP1 or the Zap1-dependent zinc transporter gene ZRT2 restores pathogenicity to a sut1 mutant. Perturbation with the cell wall inhibitor caspofungin also has distinct gene expression impact in vivo and in vitro. Unexpectedly, caspofungin induces many of the same genes that are repressed early during infection, a phenomenon that we suggest may contribute to drug efficacy. The pathogen response circuitry is tailored uniquely during infection, with many relevant regulatory relationships that are not evident during growth in vitro. Our findings support the principle that virulence is a property that is manifested only in the distinct environment in which host–pathogen interaction occurs.

          Abstract

          A study of the invasive infection of a mammalian host by the pathogenic fungus Candida albicans reveals characteristic gene regulation patterns in response to the host environment, distinct from those seen when growing in vitro.

          Author Summary

          We have a limited understanding of how the expression of pathogens’ genes changes during infection of humans or other animal hosts, in contrast to in vitro models of infection. Here we profile the alteration in gene expression over time as a predictor of functional consequences during invasive growth of Candida in the kidney; a situation in which the limited number of pathogen cells makes gene expression challenging to assay. Our findings reveal that there are distinct early and late phases of infection, and identify new genes that govern the early zinc acquisition response necessary for proliferation in vivo—and thus required for infection. We also find that the response to drug treatment that manifests during infection can be distinct from that detected in vitro. We show that a well-known gene expression response to the antifungal drug caspofungin is naturally down-regulated in infecting cells, suggesting that the efficacy of the drug may be enhanced by a susceptible state of the pathogen during invasive proliferation.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Direct multiplexed measurement of gene expression with color-coded probe pairs.

          We describe a technology, the NanoString nCounter gene expression system, which captures and counts individual mRNA transcripts. Advantages over existing platforms include direct measurement of mRNA expression levels without enzymatic reactions or bias, sensitivity coupled with high multiplex capability, and digital readout. Experiments performed on 509 human genes yielded a replicate correlation coefficient of 0.999, a detection limit between 0.1 fM and 0.5 fM, and a linear dynamic range of over 500-fold. Comparison of the NanoString nCounter gene expression system with microarrays and TaqMan PCR demonstrated that the nCounter system is more sensitive than microarrays and similar in sensitivity to real-time PCR. Finally, a comparison of transcript levels for 21 genes across seven samples measured by the nCounter system and SYBR Green real-time PCR demonstrated similar patterns of gene expression at all transcript levels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nonfilamentous C. albicans mutants are avirulent.

            Candida albicans and Saccharomyces cerevisiae switch from a yeast to a filamentous form. In Saccharomyces, this switch is controlled by two regulatory proteins, Ste12p and Phd1p. Single-mutant strains, ste12/ste12 or phd1/phd1, are partially defective, whereas the ste12/ste12 phd1/phd1 double mutant is completely defective in filamentous growth and is noninvasive. The equivalent cph1/cph1 efg1/efg1 double mutant in Candida (Cph1p is the Ste12p homolog and Efg1p is the Phd1p homolog) is also defective in filamentous growth, unable to form hyphae or pseudohyphae in response to many stimuli, including serum or macrophages. This Candida cph1/cph1 efg1/efg1 double mutant, locked in the yeast form, is avirulent in a mouse model.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulatory circuitry governing fungal development, drug resistance, and disease.

              Pathogenic fungi have become a leading cause of human mortality due to the increasing frequency of fungal infections in immunocompromised populations and the limited armamentarium of clinically useful antifungal drugs. Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are the leading causes of opportunistic fungal infections. In these diverse pathogenic fungi, complex signal transduction cascades are critical for sensing environmental changes and mediating appropriate cellular responses. For C. albicans, several environmental cues regulate a morphogenetic switch from yeast to filamentous growth, a reversible transition important for virulence. Many of the signaling cascades regulating morphogenesis are also required for cells to adapt and survive the cellular stresses imposed by antifungal drugs. Many of these signaling networks are conserved in C. neoformans and A. fumigatus, which undergo distinct morphogenetic programs during specific phases of their life cycles. Furthermore, the key mechanisms of fungal drug resistance, including alterations of the drug target, overexpression of drug efflux transporters, and alteration of cellular stress responses, are conserved between these species. This review focuses on the circuitry regulating fungal morphogenesis and drug resistance and the impact of these pathways on virulence. Although the three human-pathogenic fungi highlighted in this review are those most frequently encountered in the clinic, they represent a minute fraction of fungal diversity. Exploration of the conservation and divergence of core signal transduction pathways across C. albicans, C. neoformans, and A. fumigatus provides a foundation for the study of a broader diversity of pathogenic fungi and a platform for the development of new therapeutic strategies for fungal disease.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, CA USA )
                1544-9173
                1545-7885
                18 February 2015
                February 2015
                : 13
                : 2
                : e1002076
                Affiliations
                [1 ]Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
                [2 ]Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
                University of Aberdeen, UNITED KINGDOM
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: APM SGF WX. Performed the experiments: WX NVS. Analyzed the data: WX NVS RLE CAW SGF APM. Contributed reagents/materials/analysis tools: RLE CAW. Wrote the paper: APM SGF WX. Designed software: RLE.

                Article
                PBIOLOGY-D-14-02153
                10.1371/journal.pbio.1002076
                4333574
                25693184
                d8f6997d-a831-4450-a47f-cd6e22bdd017
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 18 June 2014
                : 9 January 2015
                Page count
                Figures: 9, Tables: 1, Pages: 32
                Funding
                This work was supported in part by NIH grants R21 DE023311 (APM) and R01AI054928 (SGF) and a gift from the Richard King Mellon Foundation (APM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Life sciences
                Life sciences

                Comments

                Comment on this article