21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Global Metabolic Shift Is Linked to Salmonella Multicellular Development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacteria can elaborate complex patterns of development that are dictated by temporally ordered patterns of gene expression, typically under the control of a master regulatory pathway. For some processes, such as biofilm development, regulators that initiate the process have been identified but subsequent phenotypic changes such as stress tolerance do not seem to be under the control of these same regulators. A hallmark feature of biofilms is growth within a self-produced extracellular matrix. In this study we used metabolomics to compare Salmonella cells in rdar colony biofilms to isogenic csgD deletion mutants that do not produce an extracellular matrix. The two populations show distinct metabolite profiles. Even though CsgD controls only extracellular matrix production, metabolite signatures associated with cellular adaptations associated with stress tolerances were present in the wild type but not the mutant cells. To further explore these differences we examine the temporal gene expression of genes implicated in biofilm development and stress adaptations. In wild type cells, genes involved in a metabolic shift to gluconeogenesis and various stress-resistance pathways exhibited an ordered expression profile timed with multicellular development even though they are not CsgD regulated. In csgD mutant cells, the ordered expression was lost. We conclude that the induction of these pathways results from production of, and growth within, a self produced matrix rather than elaboration of a defined genetic program. These results predict that common physiological properties of biofilms are induced independently of regulatory pathways that initiate biofilm formation.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Physiological heterogeneity in biofilms.

          Biofilms contain bacterial cells that are in a wide range of physiological states. Within a biofilm population, cells with diverse genotypes and phenotypes that express distinct metabolic pathways, stress responses and other specific biological activities are juxtaposed. The mechanisms that contribute to this genetic and physiological heterogeneity include microscale chemical gradients, adaptation to local environmental conditions, stochastic gene expression and the genotypic variation that occurs through mutation and selection. Here, we discuss the processes that generate chemical gradients in biofilms, the genetic and physiological responses of the bacteria as they adapt to these gradients and the techniques that can be used to visualize and measure the microscale physiological heterogeneities of bacteria in biofilms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Persister cells, dormancy and infectious disease.

            Kim Lewis (2007)
            Several well-recognized puzzles in microbiology have remained unsolved for decades. These include latent bacterial infections, unculturable microorganisms, persister cells and biofilm multidrug tolerance. Accumulating evidence suggests that these seemingly disparate phenomena result from the ability of bacteria to enter into a dormant (non-dividing) state. The molecular mechanisms that underlie the formation of dormant persister cells are now being unravelled and are the focus of this Review.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemometrics in metabonomics.

              We provide an overview of how the underlying philosophy of chemometrics is integrated throughout metabonomic studies. Four steps are demonstrated: (1) definition of the aim, (2) selection of objects, (3) sample preparation and characterization, and (4) evaluation of the collected data. This includes the tools applied for linear modeling, for example, Statistical Experimental Design (SED), Principal Component Analysis (PCA), Partial least-squares (PLS), Orthogonal-PLS (OPLS), and dynamic extensions thereof. This is illustrated by examples from the literature.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                27 July 2010
                : 5
                : 7
                : e11814
                Affiliations
                [1 ]Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Canada
                [2 ]Department of Biological Sciences, University of Calgary, Calgary, Canada
                Cinvestav, Mexico
                Author notes

                Conceived and designed the experiments: APW MGS. Performed the experiments: APW AW DA PZ RS. Analyzed the data: APW AW DA PZ RS HJV MGS. Contributed reagents/materials/analysis tools: AW HJV. Wrote the paper: APW MGS.

                [¤a]

                Current address: Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada

                [¤b]

                Current address: Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada

                Article
                10-PONE-RA-16713R1
                10.1371/journal.pone.0011814
                2910731
                20676398
                d7bcbb21-dc06-491e-a39c-f4b07e160c29
                White et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 2 March 2010
                : 22 June 2010
                Page count
                Pages: 12
                Categories
                Research Article
                Microbiology
                Microbiology/Microbial Growth and Development
                Microbiology/Microbial Physiology and Metabolism

                Uncategorized
                Uncategorized

                Comments

                Comment on this article