1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Thin-film electronics on active substrates: review of materials, technologies and applications

      , , , ,
      Journal of Physics D: Applied Physics
      IOP Publishing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the last years, the development of new materials as well as advanced fabrication techniques have enabled the transformation of electronics from bulky rigid structures into unobtrusive soft systems. This gave rise to new thin-film devices realized on previously incompatible and unconventional substrates, such as temperature-sensitive polymers, rough organic materials or fabrics. Consequently, it is now possible to realize thin-film structures on active substrates which provide additional functionality. Examples include stiffness gradients to match mechanical properties, mechanical actuation to realize smart grippers and soft robots, or microfluidic channels for lab-on-chip applications. Composite or microstructured substrates can be designed to have bespoke electrical, mechanical, biological and chemical features making the substrate an active part of a system. Here, the latest developments of smart structures carrying thin-film electronics are reviewed. Whereby the focus lies on soft and flexible systems, designed to fulfill tasks, not achievable by electronics or the substrate alone. After a brief introduction and definition of the requirements and topic areas, the materials for substrates and thin-film devices are covered with an emphasis on their intrinsic properties. Next, the technologies for electronics and substrates fabrication are summarized. Then, the desired properties and design strategies of various active substrate are discussed and benchmarked against the current state-of-the-art. Finally, available demonstrations, and use cases are presented. The review concludes by mapping the available technologies to innovative applications, identifying promising underdeveloped fields of research and potential future progress.

          Related collections

          Most cited references361

          • Record: found
          • Abstract: found
          • Article: not found

          Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.

          Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H) and organic semiconductors have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material--namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)--for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V(-1) s(-1), which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6-9 cm2 V(-1) s(-1), and device characteristics are stable during repetitive bending of the TTFT sheet.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Design, fabrication and control of soft robots.

            Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Atomic layer deposition: an overview.

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Physics D: Applied Physics
                J. Phys. D: Appl. Phys.
                IOP Publishing
                0022-3727
                1361-6463
                May 31 2022
                August 11 2022
                May 31 2022
                August 11 2022
                : 55
                : 32
                : 323002
                Article
                10.1088/1361-6463/ac6af4
                d787b3cb-962c-45ad-95aa-ebd690ca9a92
                © 2022

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article