39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Stanford Data Miner: a novel approach for integrating and exploring heterogeneous immunological data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Systems-level approaches are increasingly common in both murine and human translational studies. These approaches employ multiple high information content assays. As a result, there is a need for tools to integrate heterogeneous types of laboratory and clinical/demographic data, and to allow the exploration of that data by aggregating and/or segregating results based on particular variables (e.g., mean cytokine levels by age and gender).

          Methods

          Here we describe the application of standard data warehousing tools to create a novel environment for user-driven upload, integration, and exploration of heterogeneous data. The system presented here currently supports flow cytometry and immunoassays performed in the Stanford Human Immune Monitoring Center, but could be applied more generally.

          Results

          Users upload assay results contained in platform-specific spreadsheets of a defined format, and clinical and demographic data in spreadsheets of flexible format. Users then map sample IDs to connect the assay results with the metadata. An OLAP (on-line analytical processing) data exploration interface allows filtering and display of various dimensions (e.g., Luminex analytes in rows, treatment group in columns, filtered on a particular study). Statistics such as mean, median, and N can be displayed. The views can be expanded or contracted to aggregate or segregate data at various levels. Individual-level data is accessible with a single click. The result is a user-driven system that permits data integration and exploration in a variety of settings. We show how the system can be used to find gender-specific differences in serum cytokine levels, and compare them across experiments and assay types.

          Conclusions

          We have used the tools and techniques of data warehousing, including open-source business intelligence software, to support investigator-driven data integration and mining of diverse immunological data.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans.

          A major challenge in vaccinology is to prospectively determine vaccine efficacy. Here we have used a systems biology approach to identify early gene 'signatures' that predicted immune responses in humans vaccinated with yellow fever vaccine YF-17D. Vaccination induced genes that regulate virus innate sensing and type I interferon production. Computational analyses identified a gene signature, including complement protein C1qB and eukaryotic translation initiation factor 2 alpha kinase 4-an orchestrator of the integrated stress response-that correlated with and predicted YF-17D CD8(+) T cell responses with up to 90% accuracy in an independent, blinded trial. A distinct signature, including B cell growth factor TNFRS17, predicted the neutralizing antibody response with up to 100% accuracy. These data highlight the utility of systems biology approaches in predicting vaccine efficacy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Standardizing immunophenotyping for the Human Immunology Project.

            The heterogeneity in the healthy human immune system, and the immunological changes that portend various diseases, have been only partially described. Their comprehensive elucidation has been termed the 'Human Immunology Project'. The accurate measurement of variations in the human immune system requires precise and standardized assays to distinguish true biological changes from technical artefacts. Thus, to be successful, the Human Immunology Project will require standardized assays for immunophenotyping humans in health and disease. A major tool in this effort is flow cytometry, which remains highly variable with regard to sample handling, reagents, instrument setup and data analysis. In this Review, we outline the current state of standardization of flow cytometry assays and summarize the steps that are required to enable the Human Immunology Project.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Web-based analysis and publication of flow cytometry experiments.

              Cytobank is a Web-based application for storage, analysis, and sharing of flow cytometry experiments. Researchers use a Web browser to log in and use a wide range of tools developed for basic and advanced flow cytometry. In addition to providing access to standard cytometry tools from any computer, Cytobank creates a platform and community for developing new analysis and publication tools. Figure layouts created on Cytobank are designed to allow transparent access to the underlying experiment annotation and data processing steps. Since all flow cytometry files and analysis data are stored on a central server, experiments and figures can be viewed or edited by anyone with the proper permission, from any computer with Internet access. Once a primary researcher has performed the initial analysis of the data, collaborators can engage in experiment analysis and make their own figure layouts using the gated, compensated experiment files. Cytobank is available to the scientific community at http://www.cytobank.org. (c) 2010 by John Wiley & Sons, Inc.
                Bookmark

                Author and article information

                Journal
                J Transl Med
                J Transl Med
                Journal of Translational Medicine
                BioMed Central
                1479-5876
                2012
                28 March 2012
                : 10
                : 62
                Affiliations
                [1 ]CytoAnalytics, Denver, CO, USA
                [2 ]The Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
                [3 ]The Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
                [4 ]The Howard Hughes Medical Institute, Chevy Chase, MD, USA
                Article
                1479-5876-10-62
                10.1186/1479-5876-10-62
                3358233
                22452993
                d4229383-9461-4e18-94ab-0fe4f2c7f426
                Copyright ©2012 Siebert et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 January 2012
                : 28 March 2012
                Categories
                Methodology

                Medicine
                systems immunology,olap,data warehousing,data integration
                Medicine
                systems immunology, olap, data warehousing, data integration

                Comments

                Comment on this article