6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The postcranial anatomy of Whatcheeria deltae and its implications for the family Whatcheeriidae

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here we describe the postcranial skeleton and present the first full-body reconstruction of the early tetrapod Whatcheeria deltae from the Viséan of Iowa. The skeletal proportions, including an elongate neck and large limbs, are unlike those of other Devonian and Mississippian tetrapods. The robust limbs of Whatcheeria appear adapted for a walking gait, but the lateral lines of the cranium are fundamentally unsuited for sustained subaerial exposure. Thus, although Whatcheeria bears a general resemblance to certain terrestrially adapted Permian and Triassic members of crown tetrapod lineages, its unusual form signals a broader range of early amphibious morphologies and habits than previously considered. From the exceptionally rich collection it is evident that most Whatcheeria specimens represent immature individuals. Rare specimens suggest an adult body size of at least 2 m, over twice that of the holotype. Further comparison suggests that the Pederpes holotype might also be a juvenile and reveals a combination of hindlimb characters unique to Whatcheeria and Pederpes. These new data contribute to a revised diagnosis of the family Whatcheeriidae and a re-evaluation of fragmentary Devonian–Carboniferous fossils reported as ‘whatcheeriid’ but sharing no synapomorphies with the more precisely defined clade.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: not found
          • Book: not found

          ggplot2

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Devonian tetrapod Acanthostega gunnari Jarvik: postcranial anatomy, basal tetrapod interrelationships and patterns of skeletal evolution

            M I Coates (1996)
            The postcranial skeleton ofAcanthostega gunnarifrom the Famennian of East Greenland displays a unique, transitional, mixture of features conventionally associated with fishand tetrapod-like morphologies. The rhachitomous vertebral column has a primitive, barely differentiated atlas-axis complex, encloses an unconstricted notochordal canal, and the weakly ossified neural arches have poorly developed zygapophyses. More derived axial skeletal features include caudal vertebral proliferation and, transiently, neural radials supporting unbranched and unsegmented lepidotrichia. Sacral and post-sacral ribs reiterate uncinate cervical and anterior thoracic rib morphologies: a simple distal flange supplies a broad surface for iliac attachment. The octodactylous forelimb and hindlimb each articulate with an unsutured, foraminate endoskeletal girdle. A broad-bladed femoral shaft with extreme anterior torsion and associated flattened epipodials indicates a paddle-like hindlimb function. Phylogenetic analysis placesAcanthostegaas the sister-group ofIchthyostegaplus all more advanced tetrapods.Tulerpetonappears to be a basal stemamniote plesion, tying the amphibian-amniote split to the uppermost Devonian.Caerorhachismay represent a more derived stem-amniote plesion. Postcranial evolutionary trends spanning the taxa traditionally associated with the fish-tetrapod transition are discussed in detail. Comparison between axial skeletons of primitive tetrapods suggests that plesiomorphic fish-like morphologies were re-patterned in a cranio-caudal direction with the emergence of tetrapod vertebral regionalisation. The evolution of digited limbs lags behind the initial enlargement of endoskeletal girdles, whereas digit evolution precedes the elaboration of complex carpal and tarsal articulations. Pentadactylous limbs appear to have stabilised independently in amniote and amphibian lineages; the colosteidGreererpetonhas a pentadactylous manus, indicating that basal amphibian forelimbs may not be restricted to patterns of four digits or less.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early tetrapod relationships revisited.

              In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relationships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differences between these trees concern: (1) the internal relationships of aïstopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria crassidisca and Pholiderpeton scut collapsed in a trichotomy with a clade formed by Anthracosaurus russelli and Pholiderpeton attheyi; (3) the internal relationships of derived dissorophoids, with four amphibamid species forming an unresolved node with a clade consisting of micromelerpetontids and branchiosaurids and a clade consisting of albanerpetontids plus basal crown-group lissamphibians; (4) the position of albenerpetontids and Eocaecilia micropoda, which form an unresolved node with a trichotomy subtending Karaurus sharovi, Valdotriton gracilis and Triadobatrachus massinoti; (5) the branching pattern of derived diplocaulid nectrideans, with Batrachiderpeton reticulatum and Diceratosaurus brevirostris collapsed in a trichotomy with a clade formed by Diplocaulus magnicornis and Diploceraspis burkei. The results of the original parsimony run--as well as those retrieved from several other treatments of the data set (e.g. exclusion of postcranial and lower jaw data; character reweighting; reverse weighting)--indicate a deep split of early tetrapods between lissamphibian- and amniote-related taxa. Colosteids, Crassigyrinus, Whatcheeria and baphetids are progressively more crownward stem-tetrapods. Caerorhachis, embolomeres, gephyrostegids, Solenodonsaurus and seymouriamorphs are progressively more crownward stem-amniotes. Eucritta is basal to temnospondyls, with crown-lissamphibians nested within dissorophoids. Westlothiana is basal to Lepospondyli, but evidence for the monophyletic status of the latter is weak. Westlothiana and Lepospondyli form the sister group to diadectomorphs and crown-group amniotes. Tuditanomorph and microbrachomorph microsaurs are successively more closely related to a clade including proximodistally: (1) lysorophids; (2) Acherontiscus as sister taxon to adelospondyls; (3) scincosaurids plus diplocaulids; (4) urocordylids plus aïstopods. A data set employing cranial characters only places microsaurs on the amniote stem, but forces remaining lepospondyls to appear as sister group to colosteids on the tetrapod stem in several trees. This arrangement is not significantly worse than the tree topology obtained from the analysis of the complete data set. The pattern of sister group relationships in the crownward part of the temnospondyl-lissamphibian tree re-emphasizes the important role of dissorophoids in the lissamphibian origin debate. However, no specific dissorophoid can be identified as the immediate sister taxon to crown-group lissamphibians. The branching sequence of various stem-group amniotes reveals a coherent set of internested character-state changes related to the acquisition of progressively more terrestrial habits in several Permo-Carboniferous forms.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Zoological Journal of the Linnean Society
                Oxford University Press (OUP)
                0024-4082
                1096-3642
                February 18 2021
                February 18 2021
                Affiliations
                [1 ]Committee on Evolutionary Biology, University of Chicago, Chicago, IL, USA
                [2 ]Negauanee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
                [3 ]Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
                Article
                10.1093/zoolinnean/zlaa182
                d20c2a46-27df-45d4-bc9f-cd68c50a2388
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article