61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hypoxia and the Hypoxic Response Pathway Protect against Pore-Forming Toxins in C. elegans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pore-forming toxins (PFTs) are by far the most abundant bacterial protein toxins and are important for the virulence of many important pathogens. As such, cellular responses to PFTs critically modulate host-pathogen interactions. Although many cellular responses to PFTs have been recorded, little is understood about their relevance to pathological or defensive outcomes. To shed light on this important question, we have turned to the only genetic system for studying PFT-host interactions— Caenorhabditis elegans intoxication by Crystal (Cry) protein PFTs. We mutagenized and screened for C. elegans mutants resistant to a Cry PFT and recovered one mutant. Complementation, sequencing, transgenic rescue, and RNA interference data demonstrate that this mutant eliminates a gene normally involved in repression of the hypoxia (low oxygen response) pathway. We find that up-regulation of the C. elegans hypoxia pathway via the inactivation of three different genes that normally repress the pathway results in animals resistant to Cry PFTs. Conversely, mutation in the central activator of the hypoxia response, HIF-1, suppresses this resistance and can result in animals defective in PFT defenses. These results extend to a PFT that attacks mammals since up-regulation of the hypoxia pathway confers resistance to Vibrio cholerae cytolysin (VCC), whereas down-regulation confers hypersusceptibility. The hypoxia PFT defense pathway acts cell autonomously to protect the cells directly under attack and is different from other hypoxia pathway stress responses. Two of the downstream effectors of this pathway include the nuclear receptor nhr-57 and the unfolded protein response. In addition, the hypoxia pathway itself is induced by PFT, and low oxygen is protective against PFT intoxication. These results demonstrate that hypoxia and induction of the hypoxia response protect cells against PFTs, and that the cellular environment can be modulated via the hypoxia pathway to protect against the most prevalent class of weapons used by pathogenic bacteria.

          Author Summary

          Bacteria make many different protein toxins to attack our cells and immune system in order to infect. Amongst them, pore-forming toxins (PFTs), which punch holes in the protective plasma membrane that surrounds cells, are by far the most abundant and constitute important virulence factors. Since the integrity of the plasma membrane is fundamental to maintaining the normal intracellular environment, the breaching of the plasma membrane by PFTs results in many and dramatic intracellular responses. However, we know little about the relevance of these responses to cell survival or cell intoxication. Here, using the only genetic system for studying pore-forming toxin effects in a whole animal, we show that the same response that protects cells against low oxygen stress unexpectedly also protects cells against pore-forming toxins. Mutations in the animal that hyper-activate the low oxygen response actually make animals resistant to pore-forming toxin attack, whereas mutations that inactivate the low oxygen response make animals more susceptible. Furthermore, a low oxygen environment itself is protective against pore-forming toxins. These data show a new and powerful connection between low oxygen responses and defense against the single most common mode of bacterial attack.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of aging and age-related disease by DAF-16 and heat-shock factor.

          A.-L. Hsu (2003)
          The Caenorhabditis elegans transcription factor HSF-1, which regulates the heat-shock response, also influences aging. Reducing hsf-1 activity accelerates tissue aging and shortens life-span, and we show that hsf-1 overexpression extends lifespan. We find that HSF-1, like the transcription factor DAF-16, is required for daf-2-insulin/IGF-1 receptor mutations to extend life-span. Our findings suggest this is because HSF-1 and DAF-16 together activate expression of specific genes, including genes encoding small heat-shock proteins, which in turn promote longevity. The small heat-shock proteins also delay the onset of polyglutamine-expansion protein aggregation, suggesting that these proteins couple the normal aging process to this type of age-related disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HIF-1alpha expression regulates the bactericidal capacity of phagocytes.

            Hypoxia is a characteristic feature of the tissue microenvironment during bacterial infection. Here we report on our use of conditional gene targeting to examine the contribution of hypoxia-inducible factor 1, alpha subunit (HIF-1alpha) to myeloid cell innate immune function. HIF-1alpha was induced by bacterial infection, even under normoxia, and regulated the production of key immune effector molecules, including granule proteases, antimicrobial peptides, nitric oxide, and TNF-alpha. Mice lacking HIF-1alpha in their myeloid cell lineage showed decreased bactericidal activity and failed to restrict systemic spread of infection from an initial tissue focus. Conversely, activation of the HIF-1alpha pathway through deletion of von Hippel-Lindau tumor-suppressor protein or pharmacologic inducers supported myeloid cell production of defense factors and improved bactericidal capacity. HIF-1alpha control of myeloid cell activity in infected tissues could represent a novel therapeutic target for enhancing host defense.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map.

              Single nucleotide polymorphisms (SNPs) are valuable genetic markers of human disease. They also comprise the highest potential density marker set available for mapping experimentally derived mutations in model organisms such as Caenorhabditis elegans. To facilitate the positional cloning of mutations we have identified polymorphisms in CB4856, an isolate from a Hawaiian island that shows a uniformly high density of polymorphisms compared with the reference Bristol N2 strain. Based on 5.4 Mbp of aligned sequences, we predicted 6,222 polymorphisms. Furthermore, 3,457 of these markers modify restriction enzyme recognition sites ('snip-SNPs') and are therefore easily detected as RFLPs. Of these, 493 were experimentally confirmed by restriction digest to produce a snip-SNP map of the worm genome. A mapping strategy using snip-SNPs and bulked segregant analysis (BSA) is outlined. CB4856 is crossed into a mutant strain, and exclusion of CB4856 alleles of a subset of snip-SNPs in mutant progeny is assessed with BSA. The proximity of a linked marker to the mutation is estimated by the relative proportion of each form of the biallelic marker in populations of wildtype and mutant genomes. The usefulness of this approach is illustrated by the rapid mapping of the dyf-5 gene.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                December 2009
                December 2009
                11 December 2009
                : 5
                : 12
                : e1000689
                Affiliations
                [1 ]Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
                [2 ]United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Virulence Assessment, Laurel, Maryland, United States of America
                University of Illinois, United States of America
                Author notes
                [¤]

                Current address: Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan

                Conceived and designed the experiments: AB CSC CYK RVA. Performed the experiments: AB CSC CYK. Analyzed the data: AB RVA. Contributed reagents/materials/analysis tools: HNC. Wrote the paper: AB RVA.

                Article
                09-PLPA-RA-1493R2
                10.1371/journal.ppat.1000689
                2785477
                20011506
                d113a507-82c0-4507-bbe9-6e264ad87d1c
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 26 August 2009
                : 11 November 2009
                Page count
                Pages: 13
                Categories
                Research Article
                Cell Biology/Cell Signaling
                Cell Biology/Cellular Death and Stress Responses
                Genetics and Genomics
                Genetics and Genomics/Animal Genetics
                Genetics and Genomics/Disease Models
                Genetics and Genomics/Genetics of the Immune System
                Immunology
                Immunology/Genetics of the Immune System
                Immunology/Immune Response
                Immunology/Innate Immunity
                Infectious Diseases
                Infectious Diseases/Bacterial Infections
                Microbiology/Cellular Microbiology and Pathogenesis
                Microbiology/Innate Immunity

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article