23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new approach is presented for analysis of microplastics in environmental samples, based on selective fluorescent staining using Nile Red (NR), followed by density-based extraction and filtration. The dye adsorbs onto plastic surfaces and renders them fluorescent when irradiated with blue light. Fluorescence emission is detected using simple photography through an orange filter. Image-analysis allows fluorescent particles to be identified and counted. Magnified images can be recorded and tiled to cover the whole filter area, allowing particles down to a few micrometres to be detected. The solvatochromic nature of Nile Red also offers the possibility of plastic categorisation based on surface polarity characteristics of identified particles. This article details the development of this staining method and its initial cross-validation by comparison with infrared (IR) microscopy. Microplastics of different sizes could be detected and counted in marine sediment samples. The fluorescence staining identified the same particles as those found by scanning a filter area with IR-microscopy.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel.

          Microplastics are present in marine habitats worldwide and laboratory studies show this material can be ingested, yet data on abundance in natural populations is limited. This study documents microplastics in 10 species of fish from the English Channel. 504 Fish were examined and plastics found in the gastrointestinal tracts of 36.5%. All five pelagic species and all five demersal species had ingested plastic. Of the 184 fish that had ingested plastic the average number of pieces per fish was 1.90±0.10. A total of 351 pieces of plastic were identified using FT-IR Spectroscopy; polyamide (35.6%) and the semi-synthetic cellulosic material, rayon (57.8%) were most common. There was no significant difference between the abundance of plastic ingested by pelagic and demersal fish. Hence, microplastic ingestion appears to be common, in relatively small quantities, across a range of fish species irrespective of feeding habitat. Further work is needed to establish the potential consequences. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Contributing to marine pollution by washing your face: microplastics in facial cleansers.

            Plastics pollution in the ocean is an area of growing concern, with research efforts focusing on both the macroplastic (>5mm) and microplastic (<5mm) fractions. In the 1990 s it was recognized that a minor source of microplastic pollution was derived from liquid hand-cleansers that would have been rarely used by the average consumer. In 2009, however, the average consumer is likely to be using microplastic-containing products on a daily basis, as the majority of facial cleansers now contain polyethylene microplastics which are not captured by wastewater plants and will enter the oceans. Four microplastic-containing facial cleansers available in New Zealand supermarkets were used to quantify the size of the polythelene fragments. Three-quarters of the brands had a modal size of <100 microns and could be immediately ingested by planktonic organisms at the base of the food chain. Over time the microplastics will be subject to UV-degradation and absorb hydrophobic materials such as PCBs, making them smaller and more toxic in the long-term. Marine scientists need to educate the public to the dangers of using products that pose an immediate and long-term threat to the health of the oceans and the food we eat.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Isolation of microplastics in biota-rich seawater samples and marine organisms

              Microplastic litter is a pervasive pollutant present in aquatic systems across the globe. A range of marine organisms have the capacity to ingest microplastics, resulting in adverse health effects. Developing methods to accurately quantify microplastics in productive marine waters, and those internalized by marine organisms, is of growing importance. Here we investigate the efficacy of using acid, alkaline and enzymatic digestion techniques in mineralizing biological material from marine surface trawls to reveal any microplastics present. Our optimized enzymatic protocol can digest >97% (by weight) of the material present in plankton-rich seawater samples without destroying any microplastic debris present. In applying the method to replicate marine samples from the western English Channel, we identified 0.27 microplastics m−3. The protocol was further used to extract microplastics ingested by marine zooplankton under laboratory conditions. Our findings illustrate that enzymatic digestion can aid the detection of microplastic debris within seawater samples and marine biota.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                16 March 2017
                2017
                : 7
                : 44501
                Affiliations
                [1 ]Cefas, Centre for Environment, Fisheries, and Aquaculture Science , Pakefield Road, Lowestoft NR33 0HT, UK
                [2 ]School of Chemistry, University of East Anglia , Norwich Research Park, Norwich, NR4 7TJ, UK
                [3 ]Institute of Food Research , Norwich Research Park, Colney Lane, Norwich, NR4 7UA, UK
                [4 ]Sorbonne Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc , CS 60319, 60203 Compiègne Cedex, France
                Author notes
                [*]

                Present address: Ricardo-AEA Ltd. Gemini Building, Harwell, Didcot, OX11 0QR, UK.

                Article
                srep44501
                10.1038/srep44501
                5353725
                28300146
                d0a324e6-f87e-434d-ba94-fb1ee4a96258
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 08 November 2016
                : 07 February 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article