9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Behavioural changes and the adaptive diversification of pigeons and doves.

      Proceedings. Biological sciences
      The Royal Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          What factors determine the extent of evolutionary diversification remains a major question in evolutionary biology. Behavioural changes have long been suggested to be a major driver of phenotypic diversification by exposing animals to new selective pressures. Nevertheless, the role of behaviour in evolution remains controversial because behavioural changes can also retard evolutionary change by hiding genetic variation from selection. In the present study, we apply recently implemented Ornstein-Uhlenbeck evolutionary models to show that behavioural changes led to associated evolutionary responses in functionally relevant morphological traits of pigeons and doves (Columbiformes). Specifically, changes from terrestrial to arboreal foraging behaviour reconstructed in a set of phylogenies brought associated shorter tarsi and longer tails, consistent with functional predictions. Interestingly, the transition to arboreality accelerated the rates of evolutionary divergence, leading to an increased morphological specialization that seems to have subsequently constrained reversals to terrestrial foraging. Altogether, our results support the view that behaviour may drive evolutionary diversification, but they also highlight that its evolutionary consequences largely depend on the limits imposed by the functional demands of the adaptive zone.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Ecology and the origin of species.

          The ecological hypothesis of speciation is that reproductive isolation evolves ultimately as a consequence of divergent natural selection on traits between environments. Ecological speciation is general and might occur in allopatry or sympatry, involve many agents of natural selection, and result from a combination of adaptive processes. The main difficulty of the ecological hypothesis has been the scarcity of examples from nature, but several potential cases have recently emerged. I review the mechanisms that give rise to new species by divergent selection, compare ecological speciation with its alternatives, summarize recent tests in nature, and highlight areas requiring research.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Phenotypic Plasticity and the Origins of Diversity

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolution and behavioural responses to human-induced rapid environmental change

              Almost all organisms live in environments that have been altered, to some degree, by human activities. Because behaviour mediates interactions between an individual and its environment, the ability of organisms to behave appropriately under these new conditions is crucial for determining their immediate success or failure in these modified environments. While hundreds of species are suffering dramatically from these environmental changes, others, such as urbanized and pest species, are doing better than ever. Our goal is to provide insights into explaining such variation. We first summarize the responses of some species to novel situations, including novel risks and resources, habitat loss/fragmentation, pollutants and climate change. Using a sensory ecology approach, we present a mechanistic framework for predicting variation in behavioural responses to environmental change, drawing from models of decision-making processes and an understanding of the selective background against which they evolved. Where immediate behavioural responses are inadequate, learning or evolutionary adaptation may prove useful, although these mechanisms are also constrained by evolutionary history. Although predicting the responses of species to environmental change is difficult, we highlight the need for a better understanding of the role of evolutionary history in shaping individuals’ responses to their environment and provide suggestion for future work.
                Bookmark

                Author and article information

                Journal
                23363634
                3574396
                10.1098/rspb.2012.2893

                Comments

                Comment on this article