36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Wood Derived Cellulose Scaffolds—Processing and Mechanics

      1 , 2 , 1 , 1 , 2 , 1 , 2
      Advanced Materials
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Genome editing. The new frontier of genome engineering with CRISPR-Cas9.

          The advent of facile genome engineering using the bacterial RNA-guided CRISPR-Cas9 system in animals and plants is transforming biology. We review the history of CRISPR (clustered regularly interspaced palindromic repeat) biology from its initial discovery through the elucidation of the CRISPR-Cas9 enzyme mechanism, which has set the stage for remarkable developments using this technology to modify, regulate, or mark genomic loci in a wide variety of cells and organisms from all three domains of life. These results highlight a new era in which genomic manipulation is no longer a bottleneck to experiments, paving the way toward fundamental discoveries in biology, with applications in all branches of biotechnology, as well as strategies for human therapeutics. Copyright © 2014, American Association for the Advancement of Science.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanocelluloses: a new family of nature-based materials.

            Cellulose fibrils with widths in the nanometer range are nature-based materials with unique and potentially useful features. Most importantly, these novel nanocelluloses open up the strongly expanding fields of sustainable materials and nanocomposites, as well as medical and life-science devices, to the natural polymer cellulose. The nanodimensions of the structural elements result in a high surface area and hence the powerful interaction of these celluloses with surrounding species, such as water, organic and polymeric compounds, nanoparticles, and living cells. This Review assembles the current knowledge on the isolation of microfibrillated cellulose from wood and its application in nanocomposites; the preparation of nanocrystalline cellulose and its use as a reinforcing agent; and the biofabrication of bacterial nanocellulose, as well as its evaluation as a biomaterial for medical implants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A radiative cooling structural material

              Reducing human reliance on energy-inefficient cooling methods such as air conditioning would have a large impact on the global energy landscape. By a process of complete delignification and densification of wood, we developed a structural material with a mechanical strength of 404.3 megapascals, more than eight times that of natural wood. The cellulose nanofibers in our engineered material backscatter solar radiation and emit strongly in mid-infrared wavelengths, resulting in continuous subambient cooling during both day and night. We model the potential impact of our cooling wood and find energy savings between 20 and 60%, which is most pronounced in hot and dry climates.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                0935-9648
                1521-4095
                July 2021
                August 14 2020
                July 2021
                : 33
                : 28
                : 2001375
                Affiliations
                [1 ]ETH Zürich Institute for Building Materials Stefano‐Franscini‐Platz 3 Zurich 8093 Switzerland
                [2 ]Empa‐Swiss Federal Laboratories for Material Testing and Research Cellulose & Wood Materials Laboratory Dübendorf 8600 Switzerland
                Article
                10.1002/adma.202001375
                d02ca631-c693-420c-b86f-a6554cf040a7
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article