47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Soil biodiversity and human health

      , ,
      Nature
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Soil biodiversity is increasingly recognized as providing benefits to human health because it can suppress disease-causing soil organisms and provide clean air, water and food. Poor land-management practices and environmental change are, however, affecting belowground communities globally, and the resulting declines in soil biodiversity reduce and impair these benefits. Importantly, current research indicates that soil biodiversity can be maintained and partially restored if managed sustainably. Promoting the ecological complexity and robustness of soil biodiversity through improved management practices represents an underutilized resource with the ability to improve human health.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Clearing the air: a review of the effects of particulate matter air pollution on human health.

          The World Health Organization estimates that particulate matter (PM) air pollution contributes to approximately 800,000 premature deaths each year, ranking it the 13th leading cause of mortality worldwide. However, many studies show that the relationship is deeper and far more complicated than originally thought. PM is a portion of air pollution that is made up of extremely small particles and liquid droplets containing acids, organic chemicals, metals, and soil or dust particles. PM is categorized by size and continues to be the fraction of air pollution that is most reliably associated with human disease. PM is thought to contribute to cardiovascular and cerebrovascular disease by the mechanisms of systemic inflammation, direct and indirect coagulation activation, and direct translocation into systemic circulation. The data demonstrating PM's effect on the cardiovascular system are strong. Populations subjected to long-term exposure to PM have a significantly higher cardiovascular incident and mortality rate. Short-term acute exposures subtly increase the rate of cardiovascular events within days of a pollution spike. The data are not as strong for PM's effects on cerebrovascular disease, though some data and similar mechanisms suggest a lesser result with smaller amplitude. Respiratory diseases are also exacerbated by exposure to PM. PM causes respiratory morbidity and mortality by creating oxidative stress and inflammation that leads to pulmonary anatomic and physiologic remodeling. The literature shows PM causes worsening respiratory symptoms, more frequent medication use, decreased lung function, recurrent health care utilization, and increased mortality. PM exposure has been shown to have a small but significant adverse effect on cardiovascular, respiratory, and to a lesser extent, cerebrovascular disease. These consistent results are shown by multiple studies with varying populations, protocols, and regions. The data demonstrate a dose-dependent relationship between PM and human disease, and that removal from a PM-rich environment decreases the prevalence of these diseases. While further study is needed to elucidate the effects of composition, chemistry, and the PM effect on susceptible populations, the preponderance of data shows that PM exposure causes a small but significant increase in human morbidity and mortality. Most sources agree on certain "common sense" recommendations, although there are lonely limited data to support them. Indoor PM exposure can be reduced by the usage of air conditioning and particulate filters, decreasing indoor combustion for heating and cooking, and smoking cessation. Susceptible populations, such as the elderly or asthmatics, may benefit from limiting their outdoor activity during peak traffic periods or poor air quality days. These simple changes may benefit individual patients in both short-term symptomatic control and long-term cardiovascular and respiratory complications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mycorrhizas and soil structure.

            In addition to their well-recognized roles in plant nutrition and communities, mycorrhizas can influence the key ecosystem process of soil aggregation. Here we review the contribution of mycorrhizas, mostly focused on arbuscular mycorrhizal fungi (AMF), to soil structure at various hierarchical levels: plant community; individual root; and the soil mycelium. There are a suite of mechanisms by which mycorrhizal fungi can influence soil aggregation at each of these various scales. By extension of these mechanisms to the question of fungal diversity, it is recognized that different species or communities of fungi can promote soil aggregation to different degrees. We argue that soil aggregation should be included in a more complete 'multifunctional' perspective of mycorrhizal ecology, and that in-depth understanding of mycorrhizas/soil process relationships will require analyses emphasizing feedbacks between soil structure and mycorrhizas, rather than a uni-directional approach simply addressing mycorrhizal effects on soils. We finish the discussion by highlighting new tools, developments and foci that will probably be crucial in further understanding mycorrhizal contributions to soil structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease.

              Some of the most striking and extreme consequences of rapid, long-distance aerial dispersal involve pathogens of crop plants. Long-distance dispersal of fungal spores by the wind can spread plant diseases across and even between continents and reestablish diseases in areas where host plants are seasonally absent. For such epidemics to occur, hosts that are susceptible to the same pathogen genotypes must be grown over wide areas, as is the case with many modern crops. The strongly stochastic nature of long-distance dispersal causes founder effects in pathogen populations, such that the genotypes that cause epidemics in new territories or on cultivars with previously effective resistance genes may be atypical. Similar but less extreme population dynamics may arise from long-distance aerial dispersal of other organisms, including plants, viruses, and fungal pathogens of humans.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                December 2015
                November 23 2015
                December 2015
                : 528
                : 7580
                : 69-76
                Article
                10.1038/nature15744
                26595276
                cec2f6af-ac8a-41f7-9fd6-a4332f5fddc1
                © 2015

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article