49
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lujiatun Psittacosaurids: Understanding Individual and Taphonomic Variation Using 3D Geometric Morphometrics

      research-article
      1 , * , 1 , 2
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Psittacosaurus is one of the most abundant and speciose genera in the Dinosauria, with fifteen named species. The genus is geographically and temporally widespread with large sample sizes of several of the nominal species allowing detailed analysis of intra- and interspecific variation. We present a reanalysis of three separate, coeval species within the Psittacosauridae; P. lujiatunensis, P. major, and Hongshanosaurus houi from the Lujiatun beds of the Yixian Formation, northeastern China, using three-dimensional geometric morphometrics on a sample set of thirty skulls in combination with a reevaluation of the proposed character states for each species. Using these complementary methods, we show that individual and taphonomic variation are the joint causes of a large range of variation among the skulls when they are plotted in a morphospace. Our results demonstrate that there is only one species of Psittacosaurus within the Lujiatun beds and that the three nominal species represent different taphomorphotypes of P. lujiatunensis. The wide range of geometric morphometric variation in a single species of Psittacosaurus implies that the range of variation found in other dinosaurian groups may also be related to taphonomic distortion rather than interspecific variation. As the morphospace is driven primarily by variation resulting from taphonomic distortion, this study demonstrates that the geometric morphometric approach can only be used with great caution to delineate interspecific variation in Psittacosaurus and likely other dinosaur groups without a complementary evaluation of character states. This study presents the first application of 3D geometric morphometrics to the dinosaurian morphospace and the first attempt to quantify taphonomic variation in dinosaur skulls.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Cranial Growth and Variation in Edmontosaurs (Dinosauria: Hadrosauridae): Implications for Latest Cretaceous Megaherbivore Diversity in North America

          The well-sampled Late Cretaceous fossil record of North America remains the only high-resolution dataset for evaluating patterns of dinosaur diversity leading up to the terminal Cretaceous extinction event. Hadrosaurine hadrosaurids (Dinosauria: Ornithopoda) closely related to Edmontosaurus are among the most common megaherbivores in latest Campanian and Maastrichtian deposits of western North America. However, interpretations of edmontosaur species richness and biostratigraphy have been in constant flux for almost three decades, although the clade is generally thought to have undergone a radiation in the late Maastrichtian. We address the issue of edmontosaur diversity for the first time using rigorous morphometric analyses of virtually all known complete edmontosaur skulls. Results suggest only two valid species, Edmontosaurus regalis from the late Campanian, and E. annectens from the late Maastrichtian, with previously named taxa, including the controversial Anatotitan copei, erected on hypothesized transitional morphologies associated with ontogenetic size increase and allometric growth. A revision of North American hadrosaurid taxa suggests a decrease in both hadrosaurid diversity and disparity from the early to late Maastrichtian, a pattern likely also present in ceratopsid dinosaurs. A decline in the disparity of dominant megaherbivores in the latest Maastrichtian interval supports the hypothesis that dinosaur diversity decreased immediately preceding the end Cretaceous extinction event.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence for habitat partitioning based on adaptation to environmental light in a pair of sympatric lizard species.

            Terrestrial habitats exhibit a variety of light environments. If species exhibit evolutionary adaptations of their visual system or signals to habitat light conditions, then these conditions can directly influence the structure of communities. We evaluated habitat light characteristics and visual-signal design in a pair of sympatric species of lizards: Anolis cooki and Anolis cristatellus. We found that each species occupies a distinct microhabitat with respect to light intensity and spectral quality. We measured the relative retinal spectral sensitivity and found significant differences between the species that correlate with differences in habitat spectral quality. We measured the spectral reflectance of the dewlaps (colourful throat fans used in communication), and found that the A. cooki dewlap reflects little ultraviolet (UV), while that of A. cristatellus reflects strongly in the UV. For both species downwelling light (irradiance) is rich in UV. However the background light (radiance) is rich in UV for A. cooki, but low in UV for A. cristatellus. Thus, the dewlap of each species creates a high contrast with the background in the UV. Our findings strongly suggest that these two species are partitioning their habitat through specializations of the visual system and signal design to microhabitat light conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multivariate and geometric morphometrics in the analysis of sexual dimorphism variation in Podarcis lizards.

              Podarcis bocagei and P. carbonelli are two closely related lacertid species, very similar morphologically and ecologically. We investigated sexual dimorphism patterns presented by both species in allopatry and in sympatry. Sexual size and shape dimorphism patterns were analyzed using both multivariate and geometric morphometric techniques. Multivariate morphometrics revealed a marked sexual dimorphism in both species--males being larger with more robust habitus and females presenting a longer trunk. General patterns of sexual size dimorphism are not modified in sympatry, although there is evidence for some morphological change in male head size. The application of geometric morphometrics offered a more detailed image of head shape and revealed that males present a more developed tympanic area than do females, while females have a more rounded head. Differences in the degree of sexual shape dimorphism were detected in sympatry, but no consistent patterns were observed. From the results of the study, and based on previous knowledge on the populations studied, we conclude that the morphological differences observed are probably not caused by exploitative competition between the species, but rather appear attributable to the modification of the relative influence of sexual and natural selection on both sexes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                9 August 2013
                16 October 2013
                : 8
                : 8
                : e69265
                Affiliations
                [1 ]Department of Earth and Environmental Science, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
                [2 ]School of Veterinary Medicine, Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
                Monash University, Australia
                Author notes

                Competing Interests: Peter Dodson is a PLOS ONE editorial board member. This does not alter the authors' adherence to all of the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: BPH PD. Performed the experiments: BPH. Analyzed the data: BPH. Contributed reagents/materials/analysis tools: BPH PD. Wrote the paper: BPH PD.

                Article
                PONE-D-13-11837
                10.1371/journal.pone.0069265
                3739782
                23950887
                ce38931b-2709-432a-9b03-1793e2d8bcaa
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 March 2013
                : 7 June 2013
                Page count
                Pages: 13
                Funding
                This project was funded by grant support from NSF EAR 1024671, University of Pennsylvania Research Foundation, and the EES Paleobiology Summer Research Stipend. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Evolutionary Systematics
                Taxonomy
                Animal Taxonomy
                Paleontology
                Taphonomy
                Vertebrate Paleontology
                Paleontology
                Taphonomy
                Vertebrate Paleontology
                Zoology
                Animal Taxonomy
                Earth Sciences
                Paleontology
                Taphonomy
                Vertebrate Paleontology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article