Processing math: 100%
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Finite-size-scaling analysis of the XY universality class between two and three dimensions: An application of Novotny's transfer-matrix method

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Based on Novotny's transfer-matrix method, we simulated the (stacked) triangular Ising antiferromagnet embedded in the space with the dimensions variable in the range 2 \le d \le 3. Our aim is to investigate the criticality of the XY universality class for 2 \le d \le 3. For that purpose, we employed an extended version of the finite-size-scaling analysis developed by Novotny, who utilized this scheme to survey the Ising criticality (ferromagnet) for 1 \le d \le 3. Diagonalizing the transfer matrix for the system sizes N up to N=17, we calculated the d-dependent correlation-length critical exponent \nu(d). Our simulation result \nu(d) appears to interpolate smoothly the known two limiting cases, namely, the KT and d=3 XY universality classes, and the intermediate behavior bears close resemblance to that of the analytical formula via the 1/N-expansion technique. Methodological details including the modifications specific to the present model are reported.

          Related collections

          Author and article information

          Journal
          02 February 2005
          Article
          10.1103/PhysRevE.71.046112
          cond-mat/0502084
          ce0886a8-e79f-41ca-9379-3b9686d93c9a
          History
          Custom metadata
          Phys. Rev. E 71, 046112 (2005).
          cond-mat.stat-mech

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content115