Based on Novotny's transfer-matrix method, we simulated the (stacked) triangular Ising antiferromagnet embedded in the space with the dimensions variable in the range 2 \le d \le 3. Our aim is to investigate the criticality of the XY universality class for 2 \le d \le 3. For that purpose, we employed an extended version of the finite-size-scaling analysis developed by Novotny, who utilized this scheme to survey the Ising criticality (ferromagnet) for 1 \le d \le 3. Diagonalizing the transfer matrix for the system sizes N up to N=17, we calculated the d-dependent correlation-length critical exponent \nu(d). Our simulation result \nu(d) appears to interpolate smoothly the known two limiting cases, namely, the KT and d=3 XY universality classes, and the intermediate behavior bears close resemblance to that of the analytical formula via the 1/N-expansion technique. Methodological details including the modifications specific to the present model are reported.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.