40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      BIO-LGCA: A cellular automaton modelling class for analysing collective cell migration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Collective dynamics in multicellular systems such as biological organs and tissues plays a key role in biological development, regeneration, and pathological conditions. Collective tissue dynamics—understood as population behaviour arising from the interplay of the constituting discrete cells—can be studied with on- and off-lattice agent-based models. However, classical on-lattice agent-based models, also known as cellular automata, fail to replicate key aspects of collective migration, which is a central instance of collective behaviour in multicellular systems. To overcome drawbacks of classical on-lattice models, we introduce an on-lattice, agent-based modelling class for collective cell migration, which we call biological lattice-gas cellular automaton (BIO-LGCA). The BIO-LGCA is characterised by synchronous time updates, and the explicit consideration of individual cell velocities. While rules in classical cellular automata are typically chosen ad hoc, rules for cell-cell and cell-environment interactions in the BIO-LGCA can also be derived from experimental cell migration data or biophysical laws for individual cell migration. We introduce elementary BIO-LGCA models of fundamental cell interactions, which may be combined in a modular fashion to model complex multicellular phenomena. We exemplify the mathematical mean-field analysis of specific BIO-LGCA models, which allows to explain collective behaviour. The first example predicts the formation of clusters in adhesively interacting cells. The second example is based on a novel BIO-LGCA combining adhesive interactions and alignment. For this model, our analysis clarifies the nature of the recently discovered invasion plasticity of breast cancer cells in heterogeneous environments.

          Author summary

          Pattern formation during embryonic development and pathological tissue dynamics, such as cancer invasion, emerge from individual intercellular interactions. In order to study the impact of single cell dynamics and cell-cell interactions on tissue behaviour, one needs to develop space-time-dependent on- or off-lattice agent-based models (ABMs), which consider the behaviour of individual cells. However, classical on-lattice agent-based models also known as cellular automata fail to replicate key aspects of collective migration, which is a central instance of collective behaviour in multicellular systems. Here, we present the rule- and lattice-based BIO-LGCA modelling class which allows for (i) rigorous derivation of rules from biophysical laws and/or experimental data, (ii) mathematical analysis of collective migration, and (iii) computationally efficient simulations.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          Active Brownian particles

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Classifying collective cancer cell invasion.

            Most invasive solid tumours display predominantly collective invasion, in which groups of cells invade the peritumoral stroma while maintaining cell-cell contacts. As the concepts and experimental models for functional analysis of collective cancer cell invasion are rapidly developing, we propose a framework for addressing potential mechanisms, experimental strategies and technical challenges to study this process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Modes of cancer cell invasion and the role of the microenvironment.

              Metastasis begins with the invasion of tumor cells into the stroma and migration toward the blood stream. Human pathology studies suggest that tumor cells invade collectively as strands, cords and clusters of cells into the stroma, which is dramatically reorganized during cancer progression. Cancer cells in intravital mouse models and in vitro display many 'modes' of migration, from single isolated cells with round or elongated phenotypes to loosely-/non-adherent 'streams' of cells or collective migration of cell strands and sheets. The tumor microenvironment, and in particular stroma organization, influences the mode and dynamics of invasion. Future studies will clarify how the combination of stromal network structure, tumor cell signaling and extracellular signaling cues influence cancer cell migration and metastasis.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Funding acquisitionRole: MethodologyRole: Project administrationRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: Formal analysisRole: MethodologyRole: Writing – original draftRole: Writing – review & editing
                Role: Formal analysisRole: MethodologyRole: SoftwareRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: ResourcesRole: SupervisionRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput Biol
                plos
                PLoS Computational Biology
                Public Library of Science (San Francisco, CA USA )
                1553-734X
                1553-7358
                June 2021
                15 June 2021
                : 17
                : 6
                : e1009066
                Affiliations
                [1 ] Centre for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
                [2 ] Department of Mathematics, Universidad Nacional Autónoma de México, Mexico City, Mexico
                [3 ] Department of Mathematics, Khalifa University, Abu Dhabi, United Arab Emirates
                Inria, FRANCE
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0001-9451-8676
                https://orcid.org/0000-0001-9955-9012
                https://orcid.org/0000-0002-1270-7885
                Article
                PCOMPBIOL-D-20-01883
                10.1371/journal.pcbi.1009066
                8232544
                34129639
                cd939a28-1990-411e-b817-740361f74c8c
                © 2021 Deutsch et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 October 2020
                : 11 May 2021
                Page count
                Figures: 7, Tables: 0, Pages: 22
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100001656, Helmholtz-Gemeinschaft;
                Award ID: ZT-I-0010
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100002347, Bundesministerium für Bildung und Forschung;
                Award ID: 01ZX1707C
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100001663, Volkswagen Foundation;
                Award ID: 96732
                Award Recipient :
                Funded by: ERACoSysMed
                Award ID: 031L0139B
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100006087, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México;
                Award ID: IA104821
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100004895, European Social Fund;
                Award Recipient :
                HH acknowledges the funding support of the Helmholtz Association of German Research Centers—Initiative and Networking Fund for the project on Reduced Complexity Models (ZT-I-0010). HH is supported by MulticellML (01ZX1707C) of the Federal Ministry of Education and Research (BMBF) and the Volkswagenstiftung within the “Life?” programme (96732). AD acknowledges support by the EU-ERACOSYS project no. 031L0139B. JMNS acknowledges support from the PAPIIT-UNAM grant, project IA104821. SS is supported by the European Social Fund (ESF), co-financed by tax funds based on the budget adopted by the members of the Saxon State Parliament. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cell Motility
                Cell Migration
                Biology and Life Sciences
                Developmental Biology
                Cell Migration
                Research and Analysis Methods
                Simulation and Modeling
                Agent-Based Modeling
                Computer and Information Sciences
                Systems Science
                Agent-Based Modeling
                Physical Sciences
                Mathematics
                Systems Science
                Agent-Based Modeling
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Biology and Life Sciences
                Biophysics
                Physical Sciences
                Physics
                Biophysics
                Medicine and Health Sciences
                Oncology
                Cancers and Neoplasms
                Breast Tumors
                Breast Cancer
                Biology and Life Sciences
                Cell Biology
                Cell Motility
                Chemotaxis
                Physical Sciences
                Mathematics
                Differential Equations
                Physical Sciences
                Mathematics
                Probability Theory
                Random Variables
                Custom metadata
                vor-update-to-uncorrected-proof
                2021-06-25
                An open source Python package we have developed for implementing BIO-LGCA model simulations is available at https://github.com/sisyga/BIO-LGCA An online Java-based simulator for visualisation of elementary single cell and collective migration can be accessed at https://imc.zih.tu-dresden.de//biolgca/.

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article