151
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Structure, variation, and assembly of the root-associated microbiomes of rice

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plants depend upon beneficial interactions between roots and microbes for nutrient availability, growth promotion, and disease suppression. High-throughput sequencing approaches have provided recent insights into root microbiomes, but our current understanding is still limited relative to animal microbiomes. Here we present a detailed characterization of the root-associated microbiomes of the crop plant rice by deep sequencing, using plants grown under controlled conditions as well as field cultivation at multiple sites. The spatial resolution of the study distinguished three root-associated compartments, the endosphere (root interior), rhizoplane (root surface), and rhizosphere (soil close to the root surface), each of which was found to harbor a distinct microbiome. Under controlled greenhouse conditions, microbiome composition varied with soil source and genotype. In field conditions, geographical location and cultivation practice, namely organic vs. conventional, were factors contributing to microbiome variation. Rice cultivation is a major source of global methane emissions, and methanogenic archaea could be detected in all spatial compartments of field-grown rice. The depth and scale of this study were used to build coabundance networks that revealed potential microbial consortia, some of which were involved in methane cycling. Dynamic changes observed during microbiome acquisition, as well as steady-state compositions of spatial compartments, support a multistep model for root microbiome assembly from soil wherein the rhizoplane plays a selective gating role. Similarities in the distribution of phyla in the root microbiomes of rice and other plants suggest that conclusions derived from this study might be generally applicable to land plants.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Comparative metagenomics of microbial communities.

          The species complexity of microbial communities and challenges in culturing representative isolates make it difficult to obtain assembled genomes. Here we characterize and compare the metabolic capabilities of terrestrial and marine microbial communities using largely unassembled sequence data obtained by shotgun sequencing DNA isolated from the various environments. Quantitative gene content analysis reveals habitat-specific fingerprints that reflect known characteristics of the sampled environments. The identification of environment-specific genes through a gene-centric comparative analysis presents new opportunities for interpreting and diagnosing environments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electron transfer in syntrophic communities of anaerobic bacteria and archaea.

            Interspecies electron transfer is a key process in methanogenic and sulphate-reducing environments. Bacteria and archaea that live in syntrophic communities take advantage of the metabolic abilities of their syntrophic partner to overcome energy barriers and break down compounds that they cannot digest by themselves. Here, we review the transfer of hydrogen and formate between bacteria and archaea that helps to sustain growth in syntrophic methanogenic communities. We also describe the process of reverse electron transfer, which is a key requirement in obligately syntrophic interactions. Anaerobic methane oxidation coupled to sulphate reduction is also carried out by syntrophic communities of bacteria and archaea but, as we discuss, the exact mechanism of this syntrophic interaction is not yet understood.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants

              N S Bolan (1991)
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                February 24 2015
                February 24 2015
                February 24 2015
                January 20 2015
                : 112
                : 8
                : E911-E920
                Article
                10.1073/pnas.1414592112
                4345613
                25605935
                cd7ad614-993e-4bbb-a33a-e49d96733e90
                © 2015

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article