17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      THERANOSTICS: From Molecular Imaging Using Ga-68 Labeled Tracers and PET/CT to Personalized Radionuclide Therapy - The Bad Berka Experience

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The acronym THERANOSTICS epitomizes the inseparability of diagnosis and therapy, the pillars of medicine and takes into account personalized management of disease for a specific patient . Molecular phenotypes of neoplasms can be determined by molecular imaging with specific probes using positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), or optical methods, so that the treatment is specifically targeted against the tumor and its environment. To meet these demands, we need to define the targets, ligands, coupling and labeling chemistry, the most appropriate radionuclides, biodistribution modifiers, and finally select the right patients for the personalized treatment. THERANOSTICS of neuroendocrine tumors (NETs) using Ga-68 labeled tracers for diagnostics with positron emission tomography/ computed tomography (PET/CT), and using Lu-177 or other metallic radionuclides for radionuclide therapy by applying the same peptide proves that personalized radionuclide therapy today is already a fact and not a fiction.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3]octreotate: toxicity, efficacy, and survival.

          Despite the fact that most gastroenteropancreatic neuroendocrine tumors (GEPNETs) are slow-growing, median overall survival (OS) in patients with liver metastases is 2 to 4 years. In metastatic disease, cytoreductive therapeutic options are limited. A relatively new therapy is peptide receptor radionuclide therapy with the radiolabeled somatostatin analog [(177)Lu-DOTA(0),Tyr(3)]octreotate. Here we report on the toxicity and efficacy of this treatment, performed in over 500 patients. Patients were treated up to a cumulative dose of 750 to 800 mCi (27.8-29.6 GBq), usually in four treatment cycles, with treatment intervals of 6 to 10 weeks. Toxicity analysis was done in 504 patients, and efficacy analysis in 310 patients. Any hematologic toxicity grade 3 or 4 occurred after 3.6% of administrations. Serious adverse events that were likely attributable to the treatment were myelodysplastic syndrome in three patients, and temporary, nonfatal, liver toxicity in two patients. Complete and partial tumor remissions occurred in 2% and 28% of 310 GEPNET patients, respectively. Minor tumor response (decrease in size > 25% and < 50%) occurred in 16%. Median time to progression was 40 months. Median OS from start of treatment was 46 months, median OS from diagnosis was 128 months. Compared with historical controls, there was a survival benefit of 40 to 72 months from diagnosis. Treatment with [(177)Lu-DOTA(0),Tyr(3)]octreotate has few adverse effects. Tumor response rates and progression-free survival compare favorably to the limited number of alternative treatment modalities. Compared with historical controls, there is a benefit in OS from time of diagnosis of several years.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT.

            The aim of this study was to evaluate the diagnostic value of a new somatostatin analog, (68)Ga-labeled 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-d-Phe(1)-Tyr(3)-octreotide ((68)Ga-DOTA-TOC), for PET in patients with known or suspected neuroendocrine tumors. PET was compared with conventional scintigraphy and dedicated CT. Eighty-four patients (48 men, 36 women; age range, 28-79 y; mean age +/- SD, 58.2 +/- 12.2 y) were prospectively studied. For analysis, patients were divided into 3 groups: detection of unknown primary tumor in the presence of clinical or biochemical suspicion of neuroendocrine malignancy (n = 13 patients), initial tumor staging (n = 36 patients), and follow-up after therapy (n = 35 patients). Each patient received 100-150 MBq (68)Ga-DOTA-TOC. Imaging results of PET were compared with (99m)Tc-labeled hydrazinonicotinyl-Tyr(3)-octreotide ((99m)Tc-HYNIC-TOC) and (111)In-DOTA-TOC. CT was also performed on every patient using a multidetector scanner. Each imaging modality was interpreted separately by observers who were unaware of imaging findings before comparison with PET. The gold standard for defining true-positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN) results was based on all available histologic, imaging, and follow-up findings. PET was TP in 69 patients, TN in 12 patients, FP in 1 patient, and FN in 2 patients, indicating a sensitivity of 97%, a specificity of 92%, and an accuracy of 96%. The FP finding was caused by enhanced tracer accumulation in the pancreatic head, and the FN results were obtained in patients with a tumor of the gastrointestinal tract displaying liver metastases. (68)Ga-DOTA-TOC showed higher diagnostic efficacy compared with SPECT (TP in 37 patients, TN in 12 patients, FP in 1 patient, and FN in 34 patients) and diagnostic CT (TP in 41 patients, TN in 12 patients, FP in 5 patients, and FN in 26 patients). This difference was of statistical significance (P < 0.001). However, the combined use of PET and CT showed the highest overall accuracy. (68)Ga-DOTA-TOC PET shows a significantly higher detection rate compared with conventional somatostatin receptor scintigraphy and diagnostic CT with clinical impact in a considerable number of patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Processing of generator-produced 68Ga for medical application.

              The (68)Ge/(68)Ga generator provides an excellent source of positron-emitting (68)Ga. However, newly available "ionic" (68)Ge/(68)Ga radionuclide generators are not necessarily optimized for the synthesis of (68)Ga-labeled radiopharmaceuticals. The eluates have rather large volumes, a high concentration of H(+) (pH of 1), a breakthrough of (68)Ge, increasing with time or frequency of use, and impurities such as stable Zn(II) generated by the decay of (68)Ga, Ti(IV) as a constituent of the column material, and Fe(III) as a general impurity. We have developed an efficient route for the processing of generator-derived (68)Ga eluates, including the labeling and purification of biomolecules. Preconcentration and purification of the initial generator eluate are performed using a miniaturized column with organic cation-exchanger resin and hydrochloric acid/acetone eluent. The purified fraction was used for the labeling of nanomolar amounts of octreotide derivatives either in pure aqueous solution or in buffers. Using the generator post-eluate processing system, >97% of the initially eluated (68)Ga activity was obtained within 4 min as a 0.4-mL volume of a hydrochloric acid/acetone fraction. The initial amount of (68)Ge(IV) was decreased by a factor of 10(4), whereas initial amounts of Zn(II), Ti(IV), and Fe(III) were reduced by factors of 10(5), 10(2), and 10, respectively. The processed (68)Ga fraction was directly transferred to solutions containing labeling precursors-for example, DOTA-dPhe(1)-Tyr(3)-octreotide (DOTATOC) (DOTA = 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid). Labeling yields of >95% were achieved within 10 min. Overall yields reached 70% at 20 min after generator elution relative to the eluted (68)Ga activity, not corrected for decay. Specific activities of (68)Ga-DOTATOC were 50 MBq/nmol using a standard protocol, reaching 450 MBq/nmol under optimized conditions. Processing on a cation-exchanger in hydrochloric acid/acetone media represents an efficient strategy for the concentration and purification of generator-derived (68)Ga(III) eluates. The developed scheme guarantees high yields and safe preparation of injectable (68)Ga-labeled radiopharmaceuticals for routine application and is easy to automate. Thus, it is being successfully used in clinical environments and might contribute to a new direction for clinical PET, which could benefit significantly from the easy and safe availability of the radionuclide generator-derived metallic positron-emitter (68)Ga.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2012
                7 May 2012
                : 2
                : 5
                : 437-447
                Affiliations
                Department of Nuclear Medicine/ Center for PET/CT, Zentralklinik Bad Berka, ENETS Center of Excellence, Zentralklinik Bad Berka, 99437 Bad Berka, Germany.
                Author notes
                ✉ Corresponding author: Professor Dr. Richard P. Baum, Chairman and Clinical Director, Dept. of Nuclear Medicine / Center for PET/CT, ENETS Center of Excellence, Zentralklinik Bad Berka, 99437 Bad Berka, Germany. Tel. +49 364 585 2200, Fax +49 364 585 3515, richard.baum@ 123456zentralklinik.de .

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov02p0437
                10.7150/thno.3645
                3360197
                22768024
                cbd5c044-24f2-4efc-bb16-a95a9abdfd24
                © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited.
                History
                : 16 October 2011
                : 2 December 2011
                Categories
                Review

                Molecular medicine
                theranostics,molecular imaging,personalized radionuclide therapy.
                Molecular medicine
                theranostics, molecular imaging, personalized radionuclide therapy.

                Comments

                Comment on this article