21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inkjet printing wearable electronic devices

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this review, the recent advances in inks, strategies, and the applications of inkjet-printed wearable electronics have been summarized.

          Abstract

          In recent years, wearable electronics have experienced tremendous development due to their promising applications in fields such as portable, flexible/stretchable human-interactive sensors, displays, and energy devices. To effectively fabricate wearable electronics, a high-efficient, cost-saving, and eco-friendly manufacture technology is required. Inkjet printing, which rapidly, precisely, and reproducibly deposits a broad variety of functional materials in a non-impact, addictive patterning, and maskless approach, serves as an effective tool for the fabrication of wearable electronics. In this review, the recent advances in inks, strategies, and the applications of inkjet-printed wearable electronics are summarized. Based on uniform and high-resolution patterns, well-compatible functional inks can be deposited to fabricate flexible/stretchable and durable wearable electronics. Perspectives on the remaining challenges and future developments are also proposed.

          Related collections

          Most cited references225

          • Record: found
          • Abstract: not found
          • Article: not found

          Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoringand Personal Healthcare.

            Flexible and stretchable physical sensors that can measure and quantify electrical signals generated by human activities are attracting a great deal of attention as they have unique characteristics, such as ultrathinness, low modulus, light weight, high flexibility, and stretchability. These flexible and stretchable physical sensors conformally attached on the surface of organs or skin can provide a new opportunity for human-activity monitoring and personal healthcare. Consequently, in recent years there has been considerable research effort devoted to the development of flexible and stretchable physical sensors to fulfill the requirements of future technology, and much progress has been achieved. Here, the most recent developments of flexible and stretchable physical sensors are described, including temperature, pressure, and strain sensors, and flexible and stretchable sensor-integrated platforms. The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed first. In the next section, recent progress regarding sensor-integrated wearable platforms is overviewed in detail. Some of the latest achievements regarding self-powered sensor-integrated wearable platform technologies are also reviewed. Further research direction and challenges are also proposed to develop a fully sensor-integrated wearable platform for monitoring human activity and personal healthcare in the near future.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Electronic structure of chiral graphene tubules

                Bookmark

                Author and article information

                Journal
                JMCCCX
                Journal of Materials Chemistry C
                J. Mater. Chem. C
                Royal Society of Chemistry (RSC)
                2050-7526
                2050-7534
                2017
                2017
                : 5
                : 12
                : 2971-2993
                Affiliations
                [1 ]Key Laboratory of Green Printing
                [2 ]Institute of Chemistry
                [3 ]Chinese Academy of Sciences
                [4 ]Beijing 100190
                [5 ]P. R. China
                Article
                10.1039/C7TC00038C
                cb738d09-d6a7-4112-ade9-761051945f3b
                © 2017
                History

                Comments

                Comment on this article