5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid prediction of winter wheat yield and nitrogen use efficiency using consumer-grade unmanned aerial vehicles multispectral imagery

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rapid and accurate assessment of yield and nitrogen use efficiency (NUE) is essential for growth monitoring, efficient utilization of fertilizer and precision management. This study explored the potential of a consumer-grade DJI Phantom 4 Multispectral (P4M) camera for yield or NUE assessment in winter wheat by using the universal vegetation indices independent of growth period. Three vegetation indices having a strong correlation with yield or NUE during the entire growth season were determined through Pearson’s correlational analysis, while multiple linear regression (MLR), stepwise MLR (SMLR), and partial least-squares regression (PLSR) methods based on the aforementioned vegetation indices were adopted during different growth periods. The cumulative results showed that the reciprocal ratio vegetation index (repRVI) had a high potential for yield assessment throughout the growing season, and the late grain-filling stage was deemed as the optimal single stage with R 2, root mean square error (RMSE), and mean absolute error (MAE) of 0.85, 793.96 kg/ha, and 656.31 kg/ha, respectively. MERIS terrestrial chlorophyll index (MTCI) performed better in the vegetative period and provided the best prediction results for the N partial factor productivity (NPFP) at the jointing stage, with R 2, RMSE, and MAE of 0.65, 10.53 kg yield/kg N, and 8.90 kg yield/kg N, respectively. At the same time, the modified normalized difference blue index (mNDblue) was more accurate during the reproductive period, providing the best accuracy for agronomical NUE (aNUE) assessment at the late grain-filling stage, with R 2, RMSE, and MAE of 0.61, 7.48 kg yield/kg N, and 6.05 kg yield/kg N, respectively. Furthermore, the findings indicated that model accuracy cannot be improved by increasing the number of input features. Overall, these results indicate that the consumer-grade P4M camera is suitable for early and efficient monitoring of important crop traits, providing a cost-effective choice for the development of the precision agricultural system.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: not found
          • Article: not found

          Derivation of Leaf-Area Index from Quality of Light on the Forest Floor

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves.

            Leaf chlorophyll content provides valuable information about physiological status of plants. Reflectance measurement makes it possible to quickly and non-destructively assess, in situ, the chlorophyll content in leaves. Our objective was to investigate the spectral behavior of the relationship between reflectance and chlorophyll content and to develop a technique for non-destructive chlorophyll estimation in leaves with a wide range of pigment content and composition using reflectance in a few broad spectral bands. Spectral reflectance of maple, chestnut, wild vine and beech leaves in a wide range of pigment content and composition was investigated. It was shown that reciprocal reflectance (R lambda)-1 in the spectral range lambda from 520 to 550 nm and 695 to 705 nm related closely to the total chlorophyll content in leaves of all species. Subtraction of near infra-red reciprocal reflectance, (RNIR)-1, from (R lambda)-1 made index [(R lambda)(-1)-(RNIR)-1] linearly proportional to the total chlorophyll content in spectral ranges lambda from 525 to 555 nm and from 695 to 725 nm with coefficient of determination r2 > 0.94. To adjust for differences in leaf structure, the product of the latter index and NIR reflectance [(R lambda)(-1)-(RNIR)-1]*(RNIR) was used; this further increased the accuracy of the chlorophyll estimation in the range lambda from 520 to 585 nm and from 695 to 740 nm. Two independent data sets were used to validate the developed algorithms. The root mean square error of the chlorophyll prediction did not exceed 50 mumol/m2 in leaves with total chlorophyll ranged from 1 to 830 mumol/m2.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Field high-throughput phenotyping: the new crop breeding frontier.

              Constraints in field phenotyping capability limit our ability to dissect the genetics of quantitative traits, particularly those related to yield and stress tolerance (e.g., yield potential as well as increased drought, heat tolerance, and nutrient efficiency, etc.). The development of effective field-based high-throughput phenotyping platforms (HTPPs) remains a bottleneck for future breeding advances. However, progress in sensors, aeronautics, and high-performance computing are paving the way. Here, we review recent advances in field HTPPs, which should combine at an affordable cost, high capacity for data recording, scoring and processing, and non-invasive remote sensing methods, together with automated environmental data collection. Laboratory analyses of key plant parts may complement direct phenotyping under field conditions. Improvements in user-friendly data management together with a more powerful interpretation of results should increase the use of field HTPPs, therefore increasing the efficiency of crop genetic improvement to meet the needs of future generations. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                24 October 2022
                2022
                : 13
                : 1032170
                Affiliations
                [1] 1 College of Resource and Environment, Anhui Science and Technology University , Fengyang, China
                [2] 2 Anhui Province Agricultural Waste Fertilizer Utilization and Cultivated Land Quality Improvement Engineering Research Center, Anhui Science and Technology University , Fengyang, China
                Author notes

                Edited by: Zhenhai Li, Shandong University of Science and Technology, China

                Reviewed by: Haikuan Feng, Beijing Research Center for Information Technology in Agriculture, China; Cheryl Dalid, University of Florida, United States

                *Correspondence: Xinwei Li, lixw@ 123456ahstu.edu.cn

                †These authors have contributed equally to this work

                This article was submitted to Sustainable and Intelligent Phytoprotection, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2022.1032170
                9638066
                c9a74d3a-1c20-4dba-bc52-27cea382c6aa
                Copyright © 2022 Liu, Zhu, Tao, Chen and Li

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 August 2022
                : 07 October 2022
                Page count
                Figures: 8, Tables: 7, Equations: 6, References: 61, Pages: 20, Words: 11312
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                dji phantom 4 multispectral (p4m) camera,grain yield,vegetation indices (vis),winter wheat,nitrogen use efficiency (nue)

                Comments

                Comment on this article