8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Encapsulation and Protection of Omega-3-Rich Fish Oils Using Food-Grade Delivery Systems

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Regular consumption of adequate quantities of lipids rich in omega-3 fatty acids is claimed to provide a broad spectrum of health benefits, such as inhibiting inflammation, cardiovascular diseases, diabetes, arthritis, and ulcerative colitis. Lipids isolated from many marine sources are a rich source of long-chain polyunsaturated fatty acids (PUFAs) in the omega-3 form which are claimed to have particularly high biological activities. Functional food products designed to enhance human health and wellbeing are increasingly being fortified with these omega-3 PUFAs because of their potential nutritional and health benefits. However, food fortification with PUFAs is challenging because of their low water-solubility, their tendency to rapidly oxidize, and their variable bioavailability. These challenges can be addressed using advanced encapsulation technologies, which typically involve incorporating the omega-3 oils into well-designed colloidal particles fabricated from food-grade ingredients, such as liposomes, emulsion droplets, nanostructured lipid carriers, or microgels. These omega-3-enriched colloidal dispersions can be used in a fluid form or they can be converted into a powdered form using spray-drying, which facilitates their handling and storage, as well as prolonging their shelf life. In this review, we provide an overview of marine-based omega-3 fatty acid sources, discuss their health benefits, highlight the challenges involved with their utilization in functional foods, and present the different encapsulation technologies that can be used to improve their performance.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Reactive oxygen species (ROS) as pleiotropic physiological signalling agents

          'Reactive oxygen species' (ROS) is an umbrella term for an array of derivatives of molecular oxygen that occur as a normal attribute of aerobic life. Elevated formation of the different ROS leads to molecular damage, denoted as 'oxidative distress'. Here we focus on ROS at physiological levels and their central role in redox signalling via different post-translational modifications, denoted as 'oxidative eustress'. Two species, hydrogen peroxide (H2O2) and the superoxide anion radical (O2·-), are key redox signalling agents generated under the control of growth factors and cytokines by more than 40 enzymes, prominently including NADPH oxidases and the mitochondrial electron transport chain. At the low physiological levels in the nanomolar range, H2O2 is the major agent signalling through specific protein targets, which engage in metabolic regulation and stress responses to support cellular adaptation to a changing environment and stress. In addition, several other reactive species are involved in redox signalling, for instance nitric oxide, hydrogen sulfide and oxidized lipids. Recent methodological advances permit the assessment of molecular interactions of specific ROS molecules with specific targets in redox signalling pathways. Accordingly, major advances have occurred in understanding the role of these oxidants in physiology and disease, including the nervous, cardiovascular and immune systems, skeletal muscle and metabolic regulation as well as ageing and cancer. In the past, unspecific elimination of ROS by use of low molecular mass antioxidant compounds was not successful in counteracting disease initiation and progression in clinical trials. However, controlling specific ROS-mediated signalling pathways by selective targeting offers a perspective for a future of more refined redox medicine. This includes enzymatic defence systems such as those controlled by the stress-response transcription factors NRF2 and nuclear factor-κB, the role of trace elements such as selenium, the use of redox drugs and the modulation of environmental factors collectively known as the exposome (for example, nutrition, lifestyle and irradiation).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Comprehensive Review on Lipid Oxidation in Meat and Meat Products

            Meat and meat products are a fundamental part of the human diet. The protein and vitamin content, as well as essential fatty acids, gives them an appropriate composition to complete the nutritional requirements. However, meat constituents are susceptible to degradation processes. Among them, the most important, after microbial deterioration, are oxidative processes, which affect lipids, pigments, proteins and vitamins. During these reactions a sensory degradation of the product occurs, causing consumer rejection. In addition, there is a nutritional loss that leads to the formation of toxic substances, so the control of oxidative processes is of vital importance for the meat industry. Nonetheless, despite lipid oxidation being widely investigated for decades, the complex reactions involved in the process, as well as the different pathways and factors that influenced them, make that lipid oxidation mechanisms have not yet been completely understood. Thus, this article reviews the fundamental mechanisms of lipid oxidation, the most important oxidative reactions, the main factors that influence lipid oxidation, and the routine methods to measure compounds derived from lipid oxidation in meat.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review.

              Linoleic acid (LA) (n-6) and α-linolenic acid (ALA) (n-3) are essential fatty acids (EFAs) as they cannot be synthesized by humans or other higher animals. In the human body, these fatty acids (FAs) give rise to arachidonic acid (ARA, n-6), eicosapentaenoic acid (EPA, n-3), and docosahexaenoic acid (DHA, n-3) that play key roles in regulating body homeostasis. Locally acting bioactive signaling lipids called eicosanoids derived from these FAs also regulate diverse homeostatic processes. In general, ARA gives rise to pro-inflammatory eicosanoids whereas EPA and DHA give rise to anti-inflammatory eicosanoids. Thus, a proportionally higher consumption of n-3 PUFAs can protect us against inflammatory diseases, cancer, cardiovascular diseases, and other chronic diseases. The present review summarizes major sources, intake, and global consumption of n-3 and n-6 PUFAs. Their metabolism to biosynthesize long-chain PUFAs and eicosanoids and their roles in brain metabolism, cardiovascular disease, obesity, cancer, and bone health are also discussed.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Foods
                Foods
                foods
                Foods
                MDPI
                2304-8158
                06 July 2021
                July 2021
                : 10
                : 7
                : 1566
                Affiliations
                [1 ]Centre for Marine Living Resources and Ecology (CMLRE), Ministry of Earth Sciences, Kochi 682508, India; vishnukalladath@ 123456gmail.com
                [2 ]Central Institute of Fisheries Technology (CIFT), Indian Council for Agricultural Research, Matsyapuri P.O, Kochi 682029, India; lekshmirgcof@ 123456gmail.com (L.R.G.); ajeeshaksa@ 123456gmail.com (A.K.K.); niladri_icar@ 123456hotmail.com (N.S.C.); shaheerbb@ 123456gmail.com (S.P.); suseela1962@ 123456gmail.com (S.M.); cnrs2000@ 123456gmail.com (R.C.N.)
                [3 ]Department of Chemical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Cochin 682016, India; vishnujasiva@ 123456gmail.com
                [4 ]Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
                Author notes
                [* ]Correspondence: mcclemen@ 123456umass.edu
                Author information
                https://orcid.org/0000-0002-7936-3845
                https://orcid.org/0000-0002-9016-1291
                Article
                foods-10-01566
                10.3390/foods10071566
                8305697
                34359436
                c978a6e8-403a-402b-b5e8-bd0a93693248
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 26 May 2021
                : 01 July 2021
                Categories
                Review

                marine lipids,polyunsaturated fatty acids,nanoencapsulation,microencapsulation,spray drying

                Comments

                Comment on this article