11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Precise control of SCRaMbLE in synthetic haploid and diploid yeast

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Compatibility between host cells and heterologous pathways is a challenge for constructing organisms with high productivity or gain of function. Designer yeast cells incorporating the Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) system provide a platform for generating genotype diversity. Here we construct a genetic AND gate to enable precise control of the SCRaMbLE method to generate synthetic haploid and diploid yeast with desired phenotypes. The yield of carotenoids is increased to 1.5-fold by SCRaMbLEing haploid strains and we determine that the deletion of YEL013W is responsible for the increase. Based on the SCRaMbLEing in diploid strains, we develop a strategy called Multiplex SCRaMbLE Iterative Cycling (MuSIC) to increase the production of carotenoids up to 38.8-fold through 5 iterative cycles of SCRaMbLE. This strategy is potentially a powerful tool for increasing the production of bio-based chemicals and for mining deep knowledge.

          Abstract

          The SCRaMbLE system integrated into Sc2.0’s synthetic yeast chromosome project allows rapid strain evolution. Here the authors use a genetic logic gate to control induction of recombination in a haploid and diploid yeast carrying synthetic chromosomes.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure.

          An improved lithium acetate (LiAc)/single-stranded DNA (SS-DNA)/polyethylene glycol (PEG) protocol which yields > 1 x 10(6) transformants/micrograms plasmid DNA and the original protocol described by Schiestl and Gietz (1989) were used to investigate aspects of the mechanism of LiAc/SS-DNA/PEG transformation. The highest transformation efficiency was observed when 1 x 10(8) cells were transformed with 100 ng plasmid DNA in the presence of 50 micrograms SS carrier DNA. The yield of transformants increased linearly up to 5 micrograms plasmid per transformation. A 20-min heat shock at 42 degrees C was necessary for maximal yields. PEG was found to deposit both carrier DNA and plasmid DNA onto cells. SS carrier DNA bound more effectively to the cells and caused tighter binding of 32P-labelled plasmid DNA than did double-stranded (DS) carrier. The LiAc/SS-DNA/PEG transformation method did not result in cell fusion. DS carrier DNA competed with DS vector DNA in the transformation reaction. SS plasmid DNA transformed cells poorly in combination with both SS and DS carrier DNA. The LiAc/SS-DNA/PEG method was shown to be more effective than other treatments known to make cells transformable. A model for the mechanism of transformation by the LiAc/SS-DNA/PEG method is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Total synthesis of a functional designer eukaryotic chromosome.

            Rapid advances in DNA synthesis techniques have made it possible to engineer viruses, biochemical pathways and assemble bacterial genomes. Here, we report the synthesis of a functional 272,871-base pair designer eukaryotic chromosome, synIII, which is based on the 316,617-base pair native Saccharomyces cerevisiae chromosome III. Changes to synIII include TAG/TAA stop-codon replacements, deletion of subtelomeric regions, introns, transfer RNAs, transposons, and silent mating loci as well as insertion of loxPsym sites to enable genome scrambling. SynIII is functional in S. cerevisiae. Scrambling of the chromosome in a heterozygous diploid reveals a large increase in a-mater derivatives resulting from loss of the MATα allele on synIII. The complete design and synthesis of synIII establishes S. cerevisiae as the basis for designer eukaryotic genome biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Terpene synthases and the regulation, diversity and biological roles of terpene metabolism.

              Terpene synthases are the primary enzymes in the formation of low-molecular-weight terpene metabolites. Rapid progress in the biochemical and molecular analysis of terpene synthases has allowed significant investigations of their evolution, structural and mechanistic properties, and regulation. The organization of terpene synthases in large gene families, their characteristic ability to form multiple products, and their spatial and temporal regulation during development and in response to biotic and abiotic factors contribute to the time-variable formation of a diverse group of terpene metabolites. The structural diversity and complexity of terpenes generates an enormous potential for mediating plant-environment interactions. Engineering the activities of terpene synthases provides opportunities for detailed functional evaluations of terpene metabolites in planta.
                Bookmark

                Author and article information

                Contributors
                yjyuan@tju.edu.cn
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                22 May 2018
                22 May 2018
                2018
                : 9
                : 1933
                Affiliations
                [1 ]ISNI 0000 0004 1761 2484, GRID grid.33763.32, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, , Tianjin University, ; Tianjin, 300072 China
                [2 ]ISNI 0000 0004 1761 2484, GRID grid.33763.32, SynBio Research Platform, , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), ; Tianjin, 300072 China
                [3 ]ISNI 0000 0001 2109 4251, GRID grid.240324.3, Institute for Systems Genetics, , New York University Langone Medical Center, ; 550 First Avenue, New York, NY 10016 USA
                Author information
                http://orcid.org/0000-0002-6245-4273
                http://orcid.org/0000-0002-4068-9717
                http://orcid.org/0000-0001-8554-6245
                http://orcid.org/0000-0003-0553-0089
                Article
                3084
                10.1038/s41467-018-03084-4
                5964104
                29789567
                c8be67c3-29a4-4cf9-ad88-d81381be274a
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 13 July 2017
                : 18 January 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article