37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recurrent glioma clinical trial, CheckMate-143: the game is not over yet

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glioblastoma (GBM) is the most common, and aggressive, primary brain tumor in adults. With a median patient survival of less than two years, GBM represents one of the biggest therapeutic challenges of the modern era. Even with the best available treatment, recurrence rates are nearly 100% and therapeutic options at the time of relapse are extremely limited. Nivolumab, an anti-programmed cell death-1 (PD-1) monoclonal antibody, has provided significant clinical benefits in the treatment of various advanced cancers and represented a promising therapy for primary and recurrent GBM. CheckMate 143 (NCT 02017717) was the first large randomized clinical trial of PD pathway inhibition in the setting of GBM, including a comparison of nivolumab and the anti-VEGF antibody, bevacizumab, in the treatment of recurrent disease. However, preliminary results, recently announced in a WFNOS 2017 abstract, demonstrated a failure of nivolumab to prolong overall survival of patients with recurrent GBM, and this arm of the trial was prematurely closed. In this review, we discuss the basic concepts underlying the rational to target PD pathway in GBM, address implications of using immune checkpoint inhibitors in central nervous system malignancies, provide a rationale for possible reasons contributing to the failure of nivolumab to prolong survival in patients with recurrent disease, and analyze the future role of immune checkpoint inhibitors in the treatment of GBM.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors.

          Vaccination with irradiated B16 melanoma cells expressing either GM-CSF (Gvax) or Flt3-ligand (Fvax) combined with antibody blockade of the negative T-cell costimulatory receptor cytotoxic T-lymphocyte antigen-4 (CTLA-4) promotes rejection of preimplanted tumors. Despite CTLA-4 blockade, T-cell proliferation and cytokine production can be inhibited by the interaction of programmed death-1 (PD-1) with its ligands PD-L1 and PD-L2 or by the interaction of PD-L1 with B7-1. Here, we show that the combination of CTLA-4 and PD-1 blockade is more than twice as effective as either alone in promoting the rejection of B16 melanomas in conjunction with Fvax. Adding alphaPD-L1 to this regimen results in rejection of 65% of preimplanted tumors vs. 10% with CTLA-4 blockade alone. Combination PD-1 and CTLA-4 blockade increases effector T-cell (Teff) infiltration, resulting in highly advantageous Teff-to-regulatory T-cell ratios with the tumor. The fraction of tumor-infiltrating Teffs expressing CTLA-4 and PD-1 increases, reflecting the proliferation and accumulation of cells that would otherwise be anergized. Combination blockade also synergistically increases Teff-to-myeloid-derived suppressor cell ratios within B16 melanomas. IFN-gamma production increases in both the tumor and vaccine draining lymph nodes, as does the frequency of IFN-gamma/TNF-alpha double-producing CD8(+) T cells within the tumor. These results suggest that combination blockade of the PD-1/PD-L1- and CTLA-4-negative costimulatory pathways allows tumor-specific T cells that would otherwise be inactivated to continue to expand and carry out effector functions, thereby shifting the tumor microenvironment from suppressive to inflammatory.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity.

            Suppression of dendritic cell function in cancer patients is thought to contribute to the inhibition of immune responses and disease progression. Molecular mechanisms of this suppression remain elusive, however. Here, we show that a fraction of blood monocyte-derived myeloid dendritic cells (MDCs) express B7-H1, a member of the B7 family, on the cell surface. B7-H1 could be further upregulated by tumor environmental factors. Consistent with this finding, virtually all MDCs isolated from the tissues or draining lymph nodes of ovarian carcinomas express B7-H1. Blockade of B7-H1 enhanced MDC-mediated T-cell activation and was accompanied by downregulation of T-cell interleukin (IL)-10 and upregulation of IL-2 and interferon (IFN)-gamma. T cells conditioned with the B7-H1-blocked MDCs had a more potent ability to inhibit autologous human ovarian carcinoma growth in non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. Therefore, upregulation of B7-H1 on MDCs in the tumor microenvironment downregulates T-cell immunity. Blockade of B7-H1 represents one approach for cancer immunotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Combining radiotherapy and cancer immunotherapy: a paradigm shift.

              The therapeutic application of ionizing radiation has been largely based on its cytocidal power combined with the ability to selectively target tumors. Radiotherapy effects on survival of cancer patients are generally interpreted as the consequence of improved local control of the tumor, directly decreasing systemic spread. Experimental data from multiple cancer models have provided sufficient evidence to propose a paradigm shift, whereby some of the effects of ionizing radiation are recognized as contributing to systemic antitumor immunity. Recent examples of objective responses achieved by adding radiotherapy to immunotherapy in metastatic cancer patients support this view. Therefore, the traditional palliative role of radiotherapy in metastatic disease is evolving into that of a powerful adjuvant for immunotherapy. This combination strategy adds to the current anticancer arsenal and offers opportunities to harness the immune system to extend survival, even among metastatic and heavily pretreated cancer patients. We briefly summarize key evidence supporting the role of radiotherapy as an immune adjuvant. A critical appraisal of the current status of knowledge must include potential immunosuppressive effects of radiation that can hamper its capacity to convert the irradiated tumor into an in situ, individualized vaccine. Moreover, we discuss some of the current challenges to translate this knowledge to the clinic as more trials testing radiation with different immunotherapies are proposed.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                31 October 2017
                6 October 2017
                : 8
                : 53
                : 91779-91794
                Affiliations
                1 Department of Neurosurgery, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
                Author notes
                Correspondence to: Mahua Dey, mdey@ 123456iu.edu
                Article
                21586
                10.18632/oncotarget.21586
                5710964
                29207684
                c8385c54-3a7f-4076-b448-ad5e7f563191
                Copyright: © 2017 Filley et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 July 2017
                : 8 September 2017
                Categories
                Review

                Oncology & Radiotherapy
                gliolastoma,checkpoint inhibitor,pd-1/pd-l1,malignant glioma,immunotherapy
                Oncology & Radiotherapy
                gliolastoma, checkpoint inhibitor, pd-1/pd-l1, malignant glioma, immunotherapy

                Comments

                Comment on this article