5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Trends in Biosensors for Environmental Quality Monitoring

      , , ,
      Sensors
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The monitoring of environmental pollution requires fast, reliable, cost-effective and small devices. This need explains the recent trends in the development of biosensing devices for pollutant detection. The present review aims to summarize the newest trends regarding the use of biosensors to detect environmental contaminants. Enzyme, whole cell, antibody, aptamer, and DNA-based biosensors and biomimetic sensors are discussed. We summarize their applicability to the detection of various pollutants and mention their constructive characteristics. Several detection principles are used in biosensor design: amperometry, conductometry, luminescence, etc. They differ in terms of rapidity, sensitivity, profitability, and design. Each one is characterized by specific selectivity and detection limits depending on the sensitive element. Mimetic biosensors are slowly gaining attention from researchers and users due to their advantages compared with classical ones. Further studies are necessary for the development of robust biosensing devices that can successfully be used for the detection of pollutants from complex matrices without prior sample preparation.

          Related collections

          Most cited references167

          • Record: found
          • Abstract: found
          • Article: not found

          Biosensors: sense and sensibility.

          This review is based on the Theophilus Redwood Medal and Award lectures, delivered to Royal Society of Chemistry meetings in the UK and Ireland in 2012, and presents a personal overview of the field of biosensors. The biosensors industry is now worth billions of United States dollars, the topic attracts the attention of national initiatives across the world and tens of thousands of papers have been published in the area. This plethora of information is condensed into a concise account of the key achievements to date. The reasons for success are examined, some of the more exciting emerging technologies are highlighted and the author speculates on the importance of biosensors as a ubiquitous technology of the future for health and the maintenance of wellbeing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biosensors and their applications - A review.

            The various types of biosensors such as enzyme-based, tissue-based, immunosensors, DNA biosensors, thermal and piezoelectric biosensors have been deliberated here to highlight their indispensable applications in multitudinous fields. Some of the popular fields implementing the use of biosensors are food industry to keep a check on its quality and safety, to help distinguish between the natural and artificial; in the fermentation industry and in the saccharification process to detect precise glucose concentrations; in metabolic engineering to enable in vivo monitoring of cellular metabolism. Biosensors and their role in medical science including early stage detection of human interleukin-10 causing heart diseases, rapid detection of human papilloma virus, etc. are important aspects. Fluorescent biosensors play a vital role in drug discovery and in cancer. Biosensor applications are prevalent in the plant biology sector to find out the missing links required in metabolic processes. Other applications are involved in defence, clinical sector, and for marine applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors

              A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery. The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance i.e., increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies. Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability. Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability). Furthermore, these nanomaterials can themselves act as transduction elements. This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (e.g., noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SENSC9
                Sensors
                Sensors
                MDPI AG
                1424-8220
                February 2022
                February 15 2022
                : 22
                : 4
                : 1513
                Article
                10.3390/s22041513
                35214408
                c824efe2-fb47-4b64-82d2-7cac6f1f32a3
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article