39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ecomorphological diversifications of Mesozoic marine reptiles: the roles of ecological opportunity and extinction

      ,
      Paleobiology
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mesozoic marine ecosystems were dominated by several clades of reptiles, including sauropterygians, ichthyosaurs, crocodylomorphs, turtles, and mosasaurs, that repeatedly invaded ocean ecosystems. Previous research has shown that marine reptiles achieved great taxonomic diversity in the Middle Triassic, as they broadly diversified into many feeding modes in the aftermath of the Permo-Triassic mass extinction, but it is not known whether this initial phase of evolution was exceptional in the context of the entire Mesozoic. Here, we use a broad array of disparity, morphospace, and comparative phylogenetic analyses to test this. Metrics of ecomorphology, including functional disparity in the jaws and dentition and skull-size diversity, show that the Middle to early Late Triassic represented a time of pronounced phenotypic diversification in marine reptile evolution. Following the Late Triassic extinctions, diversity recovered, but disparity did not, and it took over 100 Myr for comparable variation to recover in the Campanian and Maastrichtian. Jurassic marine reptiles generally failed to radiate into vacated functional roles. The signatures of adaptive radiation are not seen in all marine reptile groups. Clades that diversified during the Triassic biotic recovery, the sauropterygians and ichthyosauromorphs, do show early diversifications, early high disparity, and early burst, while less support for these models is found in thalattosuchian crocodylomorphs and mosasaurs. Overall, the Triassic represented a special interval in marine reptile evolution, as a number of groups radiated into new adaptive zones.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Editorial

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Editorial

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ecology and the origin of species.

              The ecological hypothesis of speciation is that reproductive isolation evolves ultimately as a consequence of divergent natural selection on traits between environments. Ecological speciation is general and might occur in allopatry or sympatry, involve many agents of natural selection, and result from a combination of adaptive processes. The main difficulty of the ecological hypothesis has been the scarcity of examples from nature, but several potential cases have recently emerged. I review the mechanisms that give rise to new species by divergent selection, compare ecological speciation with its alternatives, summarize recent tests in nature, and highlight areas requiring research.
                Bookmark

                Author and article information

                Journal
                applab
                Paleobiology
                Paleobiology
                Cambridge University Press (CUP)
                0094-8373
                1938-5331
                November 2016
                May 17 2016
                : 42
                : 04
                : 547-573
                Article
                10.1017/pab.2016.15
                c76353ad-91ec-475f-af4a-e4c988a881d7
                © 2016
                History

                Comments

                Comment on this article