3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exogenous insulin promotes the expression of B-cell translocation gene 1 and 2 in chicken pectoralis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          B-cell translocation genes ( BTG ) have been proved to play important roles in carbohydrate metabolism through modifying insulin homeostasis and glucose metabolism. This study, therefore, was conducted to investigate the effects of exogenous insulin on the expression of BTG1 and BTG2 in chickens. Twenty-four-day-old broilers and layers were fasted for 16 h and randomly assigned to insulin treatment group (subcutaneously injected with 5 IU/kg body weight) or control group (received an equivalent volume of phosphate-buffered saline). Blood glucose concentration was measured, and it showed that the blood glucose concentrations in the layers were significantly ( P < 0.05) higher than that in the broilers under fasting state. Response to exogenous insulin, the blood glucose concentrations were greatly reduced in both breeds. Of note, the blood glucose concentration restored to 62% of the basal state at 240 min ( P < 0.05) after insulin stimulation in layers, whereas it was still in low level until 240 min in broilers (under fast state). Tissue profiling revealed that both BTG1 and BTG2 were abundantly expressed in the skeletal muscles of broilers. A negative correlation was observed between blood glucose and BTG1 (ρ = −0.289, P = 0.031) / BTG2 (ρ = −0.500, P < 0.001) in pectoralis, and BTG1 (ρ = −0.462, P < 0.001) in pancreas. As blood glucose decreased due to exogenous insulin administration (under fast state), the expression of both BTG1 and BTG2 notably upregulated in birds’ pectoralis at 120 min and/or 240 min, meanwhile pancreas BTG1 was also upregulated. Re-feeding at 120 min elevated the blood glucose and reduced the expression of BTG genes in pectoralis generally. In addition, the change of BTG1 and BTG2 expression showed distinct difference between layers and broilers at 120 min and 240 min after insulin stimulation in pectoralis, pancreas and heart tissue; even after re-feeding at 120 min, BTG2 expression at 240 min after insulin injection was downregulated in the pectoralis of layers, while it was upregulated in that broilers. Collectively, these results indicated that response to exogenous insulin, chicken blood glucose exhibited breed-specific dynamic change, and meanwhile the expressions of both BTG1 and BTG2 genes in chickens were significantly altered by exogenous insulin in a breed- and tissue-specific manner. BTG1 and BTG2 genes may negatively regulate bird's blood glucose by promoting the glucose uptake corporately in pectoralis, and through regulating the insulin secretion in pancreas (especially BTG1).

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of Insulin Action and Insulin Resistance

          The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis.

            The 2(-ΔΔ)(CT) method has been extensively used as a relative quantification strategy for quantitative real-time polymerase chain reaction (qPCR) data analysis. This method is a convenient way to calculate relative gene expression levels between different samples in that it directly uses the threshold cycles (CTs) generated by the qPCR system for calculation. However, this approach relies heavily on an invalid assumption of 100% PCR amplification efficiency across all samples. In addition, the 2(-ΔΔ)(CT) method is applied to data with automatic removal of background fluorescence by the qPCR software. Since the background fluorescence is unknown, subtracting an inaccurate background can lead to distortion of the results. To address these problems, we present an improved method, the individual efficiency corrected calculation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The mammalian anti-proliferative BTG/Tob protein family.

              G. Winkler (2010)
              The mammalian BTG/Tob family comprises six proteins (BTG1, BTG2/PC3/Tis21, BTG3/ANA, BTG4/PC3B, Tob1/Tob and Tob2), which regulate cell cycle progression in a variety of cell types. They are characterised by the conserved N-terminal domain spanning 104-106 amino acids. Recent biochemical and structural data indicate that the conserved BTG domain is a protein-protein interaction module, which is capable of binding to DNA-binding transcription factors as well as the paralogues CNOT7 (human Caf1/Caf1a) and CNOT8 (human Pop2/Calif/Caf1b), two deadenylase subunits of the Ccr4-Not complex. Consistent with this finding, several members of the BTG/Tob family are shown to be implicated in transcription in the nucleus and cytoplasmic mRNA deadenylation and turnover. The C-terminal regions are less conserved and appear to mediate protein-protein interactions that are unique to each family member. The human and mouse BTG/Tob proteins will be the focus of this review and structural aspects of BTG/Tob interactions with components of the Ccr4-Not complex, and the role of the BTG/Tob proteins in the regulation of gene expression, tumourigenesis and cancer will be discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Poult Sci
                Poult Sci
                Poultry Science
                Elsevier
                0032-5791
                1525-3171
                25 March 2022
                July 2022
                25 March 2022
                : 101
                : 7
                : 101875
                Affiliations
                [0001]College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450000, China
                Author notes
                [1 ]Corresponding author: hyanqun@ 123456aliyun.com
                Article
                S0032-5791(22)00182-1 101875
                10.1016/j.psj.2022.101875
                9118148
                35544956
                c6d338e8-0f1d-401c-8803-4207819f8e6d
                © 2022 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 11 November 2021
                : 19 March 2022
                Categories
                METABOLISM AND NUTRITION

                insulin,blood glucose,btgs,chicken
                insulin, blood glucose, btgs, chicken

                Comments

                Comment on this article