22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Bacterial antagonism in host-associated microbial communities

      ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antagonistic interactions are abundant in microbial communities and contribute not only to the composition and relative proportions of their members but also to the longer-term stability of a community. This Review will largely focus on bacterial antagonism mediated by ribosomally synthesized peptides and proteins produced by members of host-associated microbial communities. We discuss recent findings on their diversity, functions, and ecological impacts. These systems play key roles in ecosystem defense, pathogen invasion, spatial segregation, and diversity but also confer indirect gains to the aggressor from products released by killed cells. Investigations into antagonistic bacterial interactions are important for our understanding of how the microbiota establish within hosts, influence health and disease, and offer insights into potential translational applications.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Gut inflammation provides a respiratory electron acceptor for Salmonella

          Salmonella enterica serotype Typhimurium (S. Typhimurium) causes acute gut inflammation by using its virulence factors to invade the intestinal epithelium and survive in mucosal macrophages. The inflammatory response enhances the transmission success of S. Typhimurium by promoting its outgrowth in the gut lumen through unknown mechanisms. Here we show that reactive oxygen species generated during inflammation reacted with endogenous, luminal sulphur compounds (thiosulfate) to form a new respiratory electron acceptor, tetrathionate. The genes conferring the ability to utilize tetrathionate as an electron acceptor produced a growth advantage for S. Typhimurium over the competing microbiota in the lumen of the inflamed gut. We conclude that S. Typhimurium virulence factors induce host-driven production of a new electron acceptor that allows the pathogen to use respiration to compete with fermenting gut microbes. Thus, the ability to trigger intestinal inflammation is crucial for the biology of this diarrhoeal pathogen.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Host-derived nitrate boosts growth of E. coli in the inflamed gut.

            Changes in the microbial community structure are observed in individuals with intestinal inflammatory disorders. These changes are often characterized by a depletion of obligate anaerobic bacteria, whereas the relative abundance of facultative anaerobic Enterobacteriaceae increases. The mechanisms by which the host response shapes the microbial community structure, however, remain unknown. We show that nitrate generated as a by-product of the inflammatory response conferred a growth advantage to the commensal bacterium Escherichia coli in the large intestine of mice. Mice deficient in inducible nitric oxide synthase did not support the growth of E. coli by nitrate respiration, suggesting that the nitrate generated during inflammation was host-derived. Thus, the inflammatory host response selectively enhances the growth of commensal Enterobacteriaceae by generating electron acceptors for anaerobic respiration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Colicin biology.

              Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                September 20 2018
                September 21 2018
                September 20 2018
                September 21 2018
                : 361
                : 6408
                : eaat2456
                Article
                10.1126/science.aat2456
                30237322
                c67ac0b9-8d74-4b19-b99e-e3e3f6c4d061
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article