9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer

      1 , 2 , 2 , 3
      Acta Biochimica et Biophysica Sinica
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metformin is a widely prescribed hypoglycemic drug. Many studies have shown its anti-cancer properties. In the present study, we aimed to explore the effect of metformin on breast cancer and clarify the underlying mechanism. Our results showed that metformin induced ferroptosis in MDA-MB-231 cells through upregulating miR-324-3p expression. Overexpression of miR-324-3p inhibited cancer cell viability. miR-324-3p inhibitor promoted cell viability. Further studies showed that the effect of miR-324-3p was mediated by directly targeting glutathione peroxidase 4 (GPX4). miR-324-3p bound to the 3ʹ-UTR of GPX4 and led to the downregulation of GPX4. In vivo studies showed that metformin induced ferroptosis by upregulating miR-324-3p in the xenograft model of breast cancer in mice. Our study suggested that metformin promotes ferroptosis of breast cancer by targeting the miR-324-3p/GPX4 axis. Metformin could act as a potential anti-cancer agent through the induction of ferroptosis.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: an iron-dependent form of nonapoptotic cell death.

          Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease

            Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA

              MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene-expression posttranscriptionally. MiRNA research in allergy is expanding because miRNAs are crucial regulators of gene expression and promising candidates for biomarker development. MiRNA mimics and miRNA inhibitors currently in preclinical development have shown promise as novel therapeutic agents. Multiple technological platforms have been developed for miRNA isolation, miRNA quantitation, miRNA profiling, miRNA target detection, and modulating miRNA levels in vitro and in vivo. Here we will review the major technological platforms with consideration given for the advantages and disadvantages of each platform.
                Bookmark

                Author and article information

                Contributors
                Journal
                Acta Biochimica et Biophysica Sinica
                Oxford University Press (OUP)
                1672-9145
                1745-7270
                March 01 2021
                March 02 2021
                February 01 2021
                March 01 2021
                March 02 2021
                February 01 2021
                : 53
                : 3
                : 333-341
                Affiliations
                [1 ]School of Queen Mary, Nanchang University and Queen Mary University of London Joint Program, Nanchang 330006, China
                [2 ]Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563000, China
                [3 ]Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
                Article
                10.1093/abbs/gmaa180
                33522578
                c6148d52-0fe6-4d34-84a0-94a080a5997b
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article