18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Elusive Origin of Mercury

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The MESSENGER mission sought to discover what physical processes determined Mercury's high metal to silicate ratio. Instead, the mission has discovered multiple anomalous characteristics about our innermost planet. The lack of FeO and the reduced oxidation state of Mercury's crust and mantle are more extreme than nearly all other known materials in the solar system. In contrast, moderately volatile elements are present in abundances comparable to the other terrestrial planets. No single process during Mercury's formation is able to explain all of these observations. Here, we review the current ideas for the origin of Mercury's unique features. Gaps in understanding the innermost regions of the solar nebula limit testing different hypotheses. Even so, all proposed models are incomplete and need further development in order to unravel Mercury's remaining secrets.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: found
          • Article: not found

          Origin of the orbital architecture of the giant planets of the Solar System.

          Planetary formation theories suggest that the giant planets formed on circular and coplanar orbits. The eccentricities of Jupiter, Saturn and Uranus, however, reach values of 6 per cent, 9 per cent and 8 per cent, respectively. In addition, the inclinations of the orbital planes of Saturn, Uranus and Neptune take maximum values of approximately 2 degrees with respect to the mean orbital plane of Jupiter. Existing models for the excitation of the eccentricity of extrasolar giant planets have not been successfully applied to the Solar System. Here we show that a planetary system with initial quasi-circular, coplanar orbits would have evolved to the current orbital configuration, provided that Jupiter and Saturn crossed their 1:2 orbital resonance. We show that this resonance crossing could have occurred as the giant planets migrated owing to their interaction with a disk of planetesimals. Our model reproduces all the important characteristics of the giant planets' orbits, namely their final semimajor axes, eccentricities and mutual inclinations.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Oligarchic Growth of Protoplanets

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Chemical fractionations in meteorites—II. Abundance patterns and their interpretation

                Bookmark

                Author and article information

                Journal
                21 December 2017
                Article
                1712.08234
                c45b08c4-d0ed-4c91-acff-79bcb5e00754

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                To appear in "Mercury: The View after MESSENGER" edited by Solomon, Nittler & Anderson (www.cambridge.org/9781107154452). This version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. 37 pages, 5 figures
                astro-ph.EP

                Comments

                Comment on this article