21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Proving Surface Plasmons in Graphene Nanoribbons Organized as 2D Periodic Arrays and Potential Applications in Biosensors

      , , , , ,
      Chemosensors
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Surface-plasmon-based biosensors have become excellent platforms for detecting biomolecular interactions. While there are several methods to exciting surface plasmons, the major challenge is improving their sensitivity. In relation to this, graphene-based nanomaterials have been theoretically and experimentally proven to increase the sensitivity of surface plasmons. Notably, graphene nanoribbons display more versatile electronic and optical properties due to their controllable bandgaps in comparison to those of zero-gap graphene. In this work, we use a semi-analytical approach to investigate the plasmonic character of two-dimensional graphene nanoribbon arrays, considering free-standing models, i.e., models in which contact with the supporting substrate does not affect their electronic properties. Our findings provide evidence that the plasmon frequency and plasmon dispersion are highly sensitive to geometrical factors or the experimental setup within the terahertz regime. More importantly, possible applications in the molecular detection of lactose, α-thrombin, chlorpyrifos-methyl, glucose, and malaria are discussed. These predictions can be used in future experiments, which, according to what is reported here, can be correctly fitted to the input parameters of possible biosensors based on graphene nanoribbon arrays.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Energy Band-Gap Engineering of Graphene Nanoribbons

          We investigate electronic transport in lithographically patterned graphene ribbon structures where the lateral confinement of charge carriers creates an energy gap near the charge neutrality point. Individual graphene layers are contacted with metal electrodes and patterned into ribbons of varying widths and different crystallographic orientations. The temperature dependent conductance measurements show larger energy gaps opening for narrower ribbons. The sizes of these energy gaps are investigated by measuring the conductance in the nonlinear response regime at low temperatures. We find that the energy gap scales inversely with the ribbon width, thus demonstrating the ability to engineer the band gap of graphene nanostructures by lithographic processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plasmonics for improved photovoltaic devices.

            The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electronic structure and stability of semiconducting graphene nanoribbons.

              We present a systematic density functional theory study of the electronic properties, optical spectra, and relative thermodynamic stability of semiconducting graphene nanoribbons. We consider ribbons with different edge nature including bare and hydrogen-terminated ribbons, several crystallographic orientations, and widths up to 3 nm. Our results can be extrapolated to wider ribbons providing a qualitative way of determining the electronic properties of ribbons with widths of practical significance. We predict that in order to produce materials with band gaps similar to Ge or InN, the width of the ribbons must be between 2 and 3 nm. If larger bang gap ribbons are needed (like Si, InP, or GaAs), their width must be reduced to 1-2 nm. According to the extrapolated inverse power law obtained in this work, armchair carbon nanoribbons of widths larger than 8 nm will present a maximum band gap of 0.3 eV, while for ribbons with a width of 80 nm the maximum possible band gap is 0.05 eV. For chiral nanoribbons the band gap oscillations rapidly vanish as a function of the chiral angle indicating that a careful design of their crystallographic nature is an essential ingredient for controlling their electronic properties. Optical excitations show important differences between ribbons with and without hydrogen termination and are found to be sensitive to the carbon nanoribbon width. This should provide a practical way of revealing information on their size and the nature of their edges.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                CHEMO9
                Chemosensors
                Chemosensors
                MDPI AG
                2227-9040
                December 2022
                December 03 2022
                : 10
                : 12
                : 514
                Article
                10.3390/chemosensors10120514
                c3fb7a8c-b1fc-440c-ad3f-caaca1175292
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article