23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quercetin, Epigallocatechin Gallate, Curcumin, and Resveratrol: From Dietary Sources to Human MicroRNA Modulation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epidemiologic studies suggest that dietary polyphenol intake is associated with a lower incidence of several non-communicable diseases. Although several foods contain complex mixtures of polyphenols, numerous factors can affect their content. Besides the well-known capability of these molecules to act as antioxidants, they are able to interact with cell-signaling pathways, modulating gene expression, influencing the activity of transcription factors, and modulating microRNAs. Here we deeply describe four polyphenols used as nutritional supplements: quercetin, resveratrol, epigallocatechin gallate (ECGC), and curcumin, summarizing the current knowledge about them, spanning from dietary sources to the epigenetic capabilities of these compounds on microRNA modulation.

          Related collections

          Most cited references134

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Benefits of polyphenols on gut microbiota and implications in human health.

          The biological properties of dietary polyphenols are greatly dependent on their bioavailability that, in turn, is largely influenced by their degree of polymerization. The gut microbiota play a key role in modulating the production, bioavailability and, thus, the biological activities of phenolic metabolites, particularly after the intake of food containing high-molecular-weight polyphenols. In addition, evidence is emerging on the activity of dietary polyphenols on the modulation of the colonic microbial population composition or activity. However, although the great range of health-promoting activities of dietary polyphenols has been widely investigated, their effect on the modulation of the gut ecology and the two-way relationship "polyphenols ↔ microbiota" are still poorly understood. Only a few studies have examined the impact of dietary polyphenols on the human gut microbiota, and most were focused on single polyphenol molecules and selected bacterial populations. This review focuses on the reciprocal interactions between the gut microbiota and polyphenols, the mechanisms of action and the consequences of these interactions on human health. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Bioavailability of the Polyphenols: Status and Controversies

            The current interest in polyphenols has been driven primarily by epidemiological studies. However, to establish conclusive evidence for the effectiveness of dietary polyphenols in disease prevention, it is useful to better define the bioavailability of the polyphenols, so that their biological activity can be evaluated. The bioavailability appears to differ greatly among the various phenolic compounds, and the most abundant ones in our diet are not necessarily those that have the best bioavailability profile. In the present review, we focus on the factors influencing the bioavailability of the polyphenols. Moreover, a critical overview on the difficulties and the controversies of the studies on the bioavailability is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Curcumin and Cancer

              Curcumin, a polyphenol extracted from Curcuma longa in 1815, has gained attention from scientists worldwide for its biological activities (e.g., antioxidant, anti-inflammatory, antimicrobial, antiviral), among which its anticancer potential has been the most described and still remains under investigation. The present review focuses on the cell signaling pathways involved in cancer development and proliferation, and which are targeted by curcumin. Curcumin has been reported to modulate growth factors, enzymes, transcription factors, kinase, inflammatory cytokines, and proapoptotic (by upregulation) and antiapoptotic (by downregulation) proteins. This polyphenol compound, alone or combined with other agents, could represent an effective drug for cancer therapy.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                23 December 2019
                January 2020
                : 25
                : 1
                : 63
                Affiliations
                [1 ]Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy; erika.cione@ 123456unical.it (E.C.); latorre.chiara@ 123456libero.it (C.L.T.); r.cannataro@ 123456gmail.com (R.C.); mariacristinacaroleo@ 123456virgilio.it (M.C.C.); pierluigi.plastina@ 123456unical.it (P.P.)
                [2 ]Department of Health Science, School of Medicine, University of Magna Graecia, Clinical Pharmacology Unit, Mater Domini Hospital, 88100 Catanzaro, Italy
                Author notes
                [* ]Correspondence: gallelli@ 123456unicz.it ; Tel.: +39-0961-712-322
                Author information
                https://orcid.org/0000-0002-8534-4130
                https://orcid.org/0000-0003-0858-7902
                Article
                molecules-25-00063
                10.3390/molecules25010063
                6983040
                31878082
                c3d4992e-1ee1-4e5b-9f15-4ef92814a6a5
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 November 2019
                : 20 December 2019
                Categories
                Review

                nutrients,antioxidants,common use,phenolic compounds
                nutrients, antioxidants, common use, phenolic compounds

                Comments

                Comment on this article